SCORING KEY

Mechanics of Rating

The following procedures are to be followed for scoring student answer papers for the Mathematics A examination. More detailed information about scoring is provided in the publication Information Booklet for Administering and Scoring the Regents Examinations in Mathematics A and Mathematics B.

Use only red ink or red pencil in rating Regents papers. Do not attempt to correct the student's work by making insertions or changes of any kind. Use checkmarks to indicate student errors.

Unless otherwise specified, mathematically correct variations in the answers will be allowed. Units need not be given when the wording of the questions allows such omissions.

Each student's answer paper is to be scored by a minimum of three mathematics teachers. On the back of the student's detachable answer sheet, raters must enter their initials in the boxes next to the questions they have scored and also write their name in the box under the heading "Rater's/Scorer's Name."

Raters should record the student's scores for all questions and the total raw score on the student's detachable answer sheet. Then the student's total raw score should be converted to a scaled score by using the conversion chart that will be posted on the Department's web site http://www.emsc.nysed.gov/osa/ on Tuesday, January 25, 2005. The student's scaled score should be entered in the box provided on the student's detachable answer sheet. The scaled score is the student's final examination score.

Part I

Allow a total of 60 credits, 2 credits for each of the following. Allow credit if the student has written the correct answer instead of the numeral 1, 2, 3, or 4.

(1) 2 (6) 4 (11) 1 (16) 2 (21) 1 (26) 3
(2) 1 (7) 3 (12) 4 (17) 4 (22) 2 (27) 1
(3) 3 (8) 2 (13) 4 (18) 4 (23) 1 (28) 3
(4) 3 (9) 4 (14) 3 (19) 3 (24) 2 (29) 4
(5) 1 (10) 2 (15) 2 (20) 4 (25) 1 (30) 1
General Rules for Applying Mathematics Rubrics

I. General Principles for Rating

The rubrics for the constructed-response questions on the Regents Examinations in Mathematics A and Mathematics B are designed to provide a systematic, consistent method for awarding credit. The rubrics are not to be considered all-inclusive; it is impossible to anticipate all the different methods that students might use to solve a given problem. Each response must be rated carefully using the teacher’s professional judgment and knowledge of mathematics; all calculations must be checked. The specific rubrics for each question must be applied consistently to all responses. In cases that are not specifically addressed in the rubrics, raters must follow the general rating guidelines in the publication *Information Booklet for Administering and Scoring Examinations in Mathematics A and Mathematics B*, use their own professional judgment, confer with other mathematics teachers, and/or contact the consultants at the State Education Department for guidance. During each Regents examination administration period, rating questions may be referred directly to the Education Department. The contact numbers are sent to all schools before each administration period.

II. Full-Credit Responses

A full-credit response provides a complete and correct answer to all parts of the question. Sufficient work is shown to enable the rater to determine how the student arrived at the correct answer.

When the rubric for the full-credit response includes one or more examples of an acceptable method for solving the question (usually introduced by the phrase “such as”), it does not mean that there are no additional acceptable methods of arriving at the correct answer. Unless otherwise specified, mathematically correct alternative solutions should be awarded credit. The only exceptions are those questions that specify the type of solution that must be used, e.g., an algebraic solution or a graphic solution. A correct solution using a method other than the one specified is awarded half the credit of a correct solution using the specified method.

III. Appropriate Work

Full-Credit Responses: The directions in the examination booklet for all the constructed-response questions state: “Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, charts, etc.” The student has the responsibility of providing the correct answer and showing how that answer was obtained. The student must “construct” the response; the teacher should not have to search through a group of seemingly random calculations scribbled on the student paper to ascertain what method the student may have used.

Responses With Errors: Rubrics that state “Appropriate work is shown, but…” are intended to be used with solutions that show an essentially complete response to the question but contain certain types of errors, whether computational, rounding, graphing, or conceptual. If the response is incomplete, i.e., an equation is written but not solved or an equation is solved but not all of the parts of the question are answered, appropriate work has not been shown. Other rubrics address incomplete responses.

IV. Multiple Errors

Computational Errors, Graphing Errors, and Rounding Errors: Each of these types of errors results in a 1-credit deduction. Any combination of two of these types of errors results in a 2-credit deduction. No more than 2 credits should be deducted for such mechanical errors in any response. The teacher must carefully review the student’s work to determine what errors were made and what type of errors they were.

Conceptual Errors: A conceptual error involves a more serious lack of knowledge or procedure. Examples of conceptual errors include using the incorrect formula for the area of a figure, choosing the incorrect trigonometric function, or multiplying the exponents instead of adding them when multiplying terms with exponents. A response with one conceptual error can receive no more than half credit.

If a response shows repeated occurrences of the same conceptual error, the student should not be penalized twice. If the same conceptual error is repeated in responses to other questions, credit should be deducted in each response.

If a response shows two (or more) different major conceptual errors, it should be considered completely incorrect and receive no credit.

If a response shows one conceptual error and one computational, graphing, or rounding error, the teacher must award credit that takes into account both errors; i.e., awarding half credit for the conceptual error and deducting 1 credit for each mechanical error (maximum of two deductions for mechanical errors).
Part II

For each question, use the specific criteria to award a maximum of two credits. Unless otherwise specified, mathematically correct alternative solutions should be awarded appropriate credit.

(31) [2] 10, and appropriate work is shown.

[1] Appropriate work is shown, but one computational or rounding error is made.

or

[1] Appropriate work is shown, but one conceptual error is made, such as using an incorrect trigonometric function.

or

[1] Appropriate work is shown, but the length of the ladder is found.

or

[1] 10, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

(32) [2] 16, and appropriate work is shown, such as $\frac{6}{4} = \frac{24}{x}$ or a labeled diagram.

[1] Appropriate work is shown, but one computational error is made.

or

[1] Appropriate work is shown, but one conceptual error is made.

or

[1] An incorrect proportion is written, but it is solved appropriately.

or

[1] 16, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(33) [2] 75, and appropriate work is shown, such as \(3x + 15 = 4x - 5\).

[1] Appropriate work is shown, but one computational error is made.

\[\text{or} \]

[1] Appropriate work is shown, but one conceptual error is made, such as showing \(\overline{AC}\) and \(\overline{BD}\) as congruent opposite sides.

\[\text{or} \]

[1] A correct equation is written, but no further correct work is shown.

\[\text{or} \]

[1] A correct equation is written and solved for \(x\), but the length of \(\overline{AC}\) is not found.

\[\text{or} \]

[1] An incorrect equation of equal difficulty, such as \(3x + 15 + 4x - 5 = 180\), is solved appropriately, and an appropriate length of \(\overline{AC}\) is found.

\[\text{or} \]

[1] 75, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

(34) [2] The statements \(7 + 8 = 15\) and \(15 \not= 16\) are written or the explanation is given that the sum of any two sides of a triangle must be greater than the third side.

[1] An explanation is written that includes a reference to the triangle inequality, but the explanation is not complete or an incorrect conclusion is stated.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(35) [2] A correct stem-and-leaf plot is drawn, including a key.

[1] The data are arranged correctly, but incorrect labels are written on the stem-and-leaf columns. [Columns do not need to be labeled for a full-credit response, but full credit may not be awarded if the columns are labeled incorrectly.]

or

[1] The data are listed in the stem-and-leaf plot, but not in ascending order.

or

[1] One or two of the scores are left out of the stem-and-leaf plot.

or

[1] Duplicate values are left out of the stem-and-leaf plot.

[0] Incorrect labels are written on the stem-and-leaf columns, and scores are left out of the plot.

or

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
Mathematics A – continued

Part III

For each question, use the specific criteria to award a maximum of three credits. Unless otherwise specified, mathematically correct alternative solutions should be awarded appropriate credit.

(36) [3] –5, –3, –1, and appropriate work is shown, such as solving the inequality or trial and error with at least three trials and appropriate checks.

[2] Appropriate work is shown, but one computational error is made.

or

[2] Appropriate work is shown, and the inequality $x \geq -5 \frac{1}{3}$ is written, but no further correct work is shown.

or

[2] The trial-and-error method is used to find the correct solutions, but only two trials and appropriate checks are shown.

[1] Appropriate work is shown, but two or more computational errors are made.

or

[1] Appropriate work is shown, but one conceptual error is made.

or

[1] The trial-and-error method is attempted and at least six systematic trials and appropriate checks are shown, but the solutions are not found.

or

[1] –5, –3, –1, but no work or only one trial with an appropriate check is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(37) [3] 12, and appropriate work is shown, such as calculating volume = 5,760 in\(^3\) and dividing by 500 in\(^3\).

[2] Appropriate work is shown, but one computational or rounding error is made.

\textit{or}

[2] The volume is found incorrectly by multiplying \(24 \times 16 \times 18\), but it is divided by 500 and rounded appropriately, resulting in an answer of 14.

[1] Appropriate work is shown, but two or more computational or rounding errors are made.

\textit{or}

[1] Appropriate work is shown, but one conceptual error is made.

\textit{or}

[1] The volume of 5,760 is found correctly, but no further correct work is shown.

\textit{or}

[1] 12, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
For each question, use the specific criteria to award a maximum of four credits. Unless otherwise specified, mathematically correct alternative solutions should be awarded appropriate credit.

(38) [4] \(m \angle A = 20, \ m \angle B = 59, \) and \(m \angle C = 101, \) and appropriate work is shown.

[3] Appropriate work is shown, but one computational error is made.

 or

[3] A correct equation is written and solved, and the correct measures for the angles are found, but they are not labeled or are labeled incorrectly.

[2] Appropriate work is shown, but two or more computational errors are made.

 or

[2] Appropriate work is shown, but one conceptual error is made.

 or

[2] A correct equation is written and solved for \(x, \) but the measures of the angles are not found.

 or

[2] An incorrect equation of equal difficulty is solved appropriately, and the three angles are found.

[1] Appropriate work is shown, but one conceptual error and one computational error are made.

 or

[1] A correct equation is written, but no further correct work is shown.

 or

[1] \(m \angle A = 20, \ m \angle B = 59, \) and \(m \angle C = 101, \) but no work is shown.

[0] \(m \angle A = 20 \) or \(m \angle B = 59 \) or \(m \angle C = 101, \) but no work is shown.

 or

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(39) [4] 210, and appropriate work is shown, such as a system of equations or the linear equation $5x + \frac{2}{2}(295 - x) = 1,220$.

[3] Appropriate work is shown, but one computational error is made.

or

[3] Appropriate work is shown, but the number of children’s tickets is found as the answer.

[2] Appropriate work is shown, but two or more computational errors are made.

or

[2] Appropriate work is shown, but one conceptual error is made.

or

or

[2] 210, but a method other than an algebraic solution is used.

[1] Appropriate work is shown, but one conceptual error and one computational error are made.

or

[1] The correct system of equations or linear equation is written, but no further correct work is shown.

or

[1] 210, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
Map to Learning Standards

<table>
<thead>
<tr>
<th>Key Ideas</th>
<th>Item Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical Reasoning</td>
<td>1, 13, 19</td>
</tr>
<tr>
<td>Number and Numeration</td>
<td>12, 16, 18, 26</td>
</tr>
<tr>
<td>Operations</td>
<td>5, 9, 10, 11, 23, 29, 30</td>
</tr>
<tr>
<td>Modeling/Multiple Representation</td>
<td>2, 6, 14, 17, 27, 33, 34, 39</td>
</tr>
<tr>
<td>Measurement</td>
<td>4, 8, 21, 24, 31, 32, 35, 37</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>3, 15, 25</td>
</tr>
<tr>
<td>Patterns/Functions</td>
<td>7, 20, 22, 28, 36, 38</td>
</tr>
</tbody>
</table>

Regents Examination in Mathematics A
January 2005

Chart for Converting Total Test Raw Scores to Final Examination Scores (Scaled Scores)

The Chart for Determining the Final Examination Score for the January 2005 Regents Examination in Mathematics A, normally located on this page, will be posted on the Department’s web site http://www.emsc.nysed.gov/osa/ on Tuesday, January 25, 2005. Conversion charts provided for previous administrations of the Mathematics A examination must NOT be used to determine students’ final scores for this administration.