FOR TEACHERS ONLY

The University of the State of New York
REGENTS HIGH SCHOOL EXAMINATION

PHYSICAL SETTING/PHYSICS

Thursday, June 13, 2013 — 1:15 to 4:15 p.m., only

SCORING KEY AND RATING GUIDE

Directions to the Teacher:
Refer to the directions on page 2 before rating student papers. Updated information regarding the
rating of this examination may be posted on the New York State Education Department's web site
during the rating period. Check this web site at: http://www.p12.nysed.gov/assessment/ and select
the link “Scoring Information” for any recently posted information regarding this examination.
This site should be checked before the rating process for this examination begins and several times
throughout the Regents Examination period.

Part A and Part B–1

Allow 1 credit for each correct response.

<table>
<thead>
<tr>
<th>Part A</th>
<th>Part B–1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 4</td>
<td>36 2</td>
</tr>
<tr>
<td>2 1</td>
<td>37 1</td>
</tr>
<tr>
<td>3 1</td>
<td>38 4</td>
</tr>
<tr>
<td>4 2</td>
<td>39 3</td>
</tr>
<tr>
<td>5 1</td>
<td>40 2</td>
</tr>
<tr>
<td>6 4</td>
<td>41 3</td>
</tr>
<tr>
<td>7 4</td>
<td>42 1</td>
</tr>
<tr>
<td>8 1</td>
<td>43 2</td>
</tr>
<tr>
<td>9 3</td>
<td>44 1</td>
</tr>
<tr>
<td>10 3</td>
<td>40 2</td>
</tr>
<tr>
<td>11 1</td>
<td>41 3</td>
</tr>
<tr>
<td>12 2</td>
<td>42 1</td>
</tr>
<tr>
<td>13 2</td>
<td>43 2</td>
</tr>
<tr>
<td>14 4</td>
<td>44 1</td>
</tr>
<tr>
<td>15 3</td>
<td>45 3</td>
</tr>
<tr>
<td>16 4</td>
<td>46 3</td>
</tr>
<tr>
<td>17 1</td>
<td>47 4</td>
</tr>
<tr>
<td>18 2</td>
<td>48 4</td>
</tr>
<tr>
<td>19 1</td>
<td>49 1</td>
</tr>
<tr>
<td>20 4</td>
<td>50 2</td>
</tr>
<tr>
<td>21 4</td>
<td>51 4</td>
</tr>
<tr>
<td>22 4</td>
<td>52 2</td>
</tr>
<tr>
<td>23 3</td>
<td>53 3</td>
</tr>
<tr>
<td>24 3</td>
<td>54 1</td>
</tr>
<tr>
<td>25 4</td>
<td>55 1</td>
</tr>
<tr>
<td>26 2</td>
<td>56 3</td>
</tr>
<tr>
<td>27 1</td>
<td>57 2</td>
</tr>
</tbody>
</table>
Directions to the Teacher

Do not attempt to correct the student’s work by making insertions or changes of any kind. If the student’s responses for the multiple-choice questions are being hand scored prior to being scanned, the scorer must be careful not to make any marks on the answer sheet except to record the scores in the designated score boxes. Marks elsewhere on the answer sheet will interfere with the accuracy of the scanning.

For Part A and Part B–1, indicate by means of a check mark each incorrect or omitted answer. In the box provided at the end of each part, record the number of questions the student answered correctly for that part.

At least two science teachers must participate in the scoring of each student’s responses to the Part B–2 and Part C open-ended questions. Each of these teachers should be responsible for scoring a selected number of the open-ended questions on each answer paper. No one teacher is to score more than approximately one-half of the open-ended questions on a student’s answer paper. Teachers may not score their own students’ answer papers.

Students’ responses must be scored strictly according to the Scoring Key and Rating Guide. For open-ended questions, credit may be allowed for responses other than those given in the rating guide if the response is a scientifically accurate answer to the question and demonstrates adequate knowledge as indicated by the examples in the rating guide.

Fractional credit is not allowed. Only whole-number credit may be given to a response. Units need not be given when the wording of the questions allows such omissions.

Raters should enter the scores earned for Part A, Part B–1, Part B–2, and Part C on the appropriate lines in the box printed on the answer booklet, and then should add these four scores and enter the total in the box labeled “Total Written Test Score.” Then, the student’s raw score on the written test should be converted to a scale score by using the conversion chart that will be posted on the Department’s web site at http://www.p12.nysed.gov/assessment/ on Thursday, June 13, 2013. The student’s scale score should be entered in the labeled box on the student’s answer booklet. The scale score is the student’s final examination score. On the front of the student’s answer booklet, raters must enter their initials on the lines next to “Rater 1” or “Rater 2.”

Schools are not permitted to rescore any of the open-ended questions on this exam after each question has been rated once, regardless of the final exam score. Schools are required to ensure that the raw scores have been added correctly and that the resulting scale score has been determined accurately.

Because scale scores corresponding to raw scores in the conversion chart may change from one administration to another, it is crucial that for each administration, the conversion chart provided for that administration be used to determine the student’s final score.

Scoring Criteria for Calculations

For each question requiring the student to *show all calculations, including the equation and substitution with units*, apply the following scoring criteria:

- Allow 1 credit for the equation and substitution of values with units. If the equation and/or substitution with units is not shown, do not allow this credit. Allow credit if the student has listed the values with units and written a correct equation.

- Allow 1 credit for the correct answer (number and unit). If the number is given without the unit, allow credit if the credit for units was previously deducted for this calculation problem.

- Penalize a student only once per calculation problem for incorrect or omitted units.

- Allow credit if the answer is not expressed with the correct number of significant figures.

Part B–2

51 [1] Allow 1 credit for the equation and substitution with units. Refer to *Scoring Criteria for Calculations* in this rating guide.

Example of a 1-credit response:

\[R = \frac{\rho L}{\Lambda} \]

\[
\rho = \frac{RA}{L}
\]

\[
\rho = \frac{(0.757 \ \Omega)(3.50 \times 10^{-6} \text{ m}^2)}{25.0 \text{ m}}
\]

52 [1] Allow 1 credit for the correct answer with units.

Examples of 1-credit responses:

\[
\rho = 1.06 \times 10^{-7} \ \Omega \cdot \text{m} \quad \text{or} \quad \rho = 10.6 \times 10^{-8} \ \Omega \cdot \text{m}
\]

Note: Allow credit for an answer that is consistent with the student’s response to question 51. Do not penalize the student more than 1 credit for errors in units in questions 51 and 52.
53 [1] Allow 1 credit for at least one complete wave with an amplitude of 0.1 m and a wavelength of 2 m, regardless of phase or shape.

Example of a 1-credit response:

![Graph showing a sine wave with displacement and position axes.](image)

Note: If more than one cycle is drawn, grade only the first cycle.

54 [1] Allow 1 credit for the equation and substitution with units. Refer to Scoring Criteria for Calculations in this rating guide.

Example of a 1-credit response:

\[J = F_{\text{net}} t \]

\[t = \frac{J}{F_{\text{net}}} \]

\[t = \frac{3.6 \text{ N} \cdot \text{s}}{600 \text{ N}} \]

55 [1] Allow 1 credit for a correct answer with units.

Examples of 1-credit responses:

\[t = 0.0060 \text{ s} \quad \text{or} \quad t = 6.0 \times 10^{-3} \text{ s} \]

Note: Allow credit for an answer that is consistent with the student’s response to question 54. Do not penalize the student more than 1 credit for errors in units in questions 54 and 55.

56 [1] Allow 1 credit for three field lines drawn showing the correct shape and direction of the field.

Examples of 1-credit responses:

![Field lines diagram](image)
57 [1] Allow 1 credit for 1.25 m/s² ± 0.05 m/s².

58 [1] Allow 1 credit for the equation and substitution with units. Refer to Scoring Criteria for Calculations in this rating guide.

Examples of 1-credit responses:

\[d = v_i t + \frac{1}{2} at^2 \]

\[d = (5.0 \text{ m/s})(4.0 \text{ s}) + \frac{1}{2} (1.25 \text{ m/s}^2)(4.0 \text{ s})^2 \]

or

\[\bar{v} = \frac{d}{t} \]

\[d = \bar{v}t \]

\[d = (7.5 \text{ m/s})(4.0 \text{ s}) \]

or

\[d = \text{area under graph} \]

\[d = \left(\frac{b_1 + b_2}{2} \right) h \]

\[d = \left(\frac{5.0 \text{ m/s} + 10.0 \text{ m/s}}{2} \right) 4.0 \text{ s} \]

Note: Allow credit for an answer that is consistent with the student’s response to question 57.

59 [1] Allow 1 credit for the correct answer with units.

Example of a 1-credit response:

\[d = 30. \text{ m} \]

Note: Allow credit for an answer that is consistent with the student’s response to question 58. Do not penalize the student more than 1 credit for errors in units in questions 58 and 59.
60 [1] Allow 1 credit for 15 Ω.

61 [1] Allow 1 credit for the equation and substitution with units. Refer to Scoring Criteria for Calculations in this rating guide.

Examples of 1-credit responses:

\[
\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}
\]
\[R = \frac{V}{I}\]

\[
\frac{1}{R_2} = \frac{1}{R_{eq}} - \frac{1}{R_1}
\]
\[R = \frac{30. V}{0.50 \, A}\]

\[
\frac{1}{R_2} = \frac{1}{15 \, \Omega} - \frac{1}{20. \, \Omega}
\]

Note: Allow credit for substitution consistent with the student’s response to question 60.

62 [1] Allow 1 credit for the correct answer with units.

Example of a 1-credit response:

\[R_2 = 60. \, \Omega\]

Note: Allow credit for an answer that is consistent with the student’s response to question 61. Do not penalize the student more than 1 credit for errors in units in questions 61 and 62.
63 [1] Allow 1 credit for the equation and substitution with units. Refer to Scoring Criteria for Calculations in this rating guide.

Example of a 1-credit response:

\[a_c = \frac{v^2}{r} \]

\[a_c = \frac{(2.5 \text{ m/s})^2}{0.80 \text{ m}} \]

64 [1] Allow 1 credit for the correct answer with units.

Example of a 1-credit response:

\[a_c = 7.8 \text{ m/s}^2 \]

Note: Allow credit for an answer that is consistent with the student’s response to question 63. Do not penalize the student more than 1 credit for errors in units in questions 63 and 64.

65 [1] Allow 1 credit for an arrow drawn on the string and directed toward the center of curvature or drawn alongside and parallel to the string.

Example of a 1-credit response:

![Diagram of a string with a 28-g stopper and a radius of 0.80 m.]

Note: Do not allow credit if more than one arrow is drawn, unless the correct arrow is labeled appropriately.
Part C

66 [1] Allow 1 credit for \(-8 \) or \(10^{-8} \).

Note: Allow credit for a correct answer that also includes the unit “s”.

Do *not* allow credit for 10 nanoseconds or a decimal form, such as \(0.000000010 \) s.

67 [1] Allow 1 credit for the equation and substitution with units. Refer to *Scoring Criteria for Calculations* in this rating guide.

Example of a 1-credit response:

\[
E = hf \\
E = (6.63 \times 10^{-34} \text{ J} \cdot \text{s})(4.76 \times 10^{14} \text{ Hz})
\]

68 [1] Allow 1 credit for the correct answer with units.

Example of a 1-credit response:

\[
E = 3.16 \times 10^{-19} \text{ J}
\]

Note: Allow credit for an answer that is consistent with the student's response to question 67. Do *not* penalize the student more than 1 credit for errors in units in questions 67 and 68.

69 [1] Allow 1 credit for stating that the ground state is the lowest available energy level that an atom can have or that the ground state is the most stable energy state.
70 [1] Allow 1 credit for a 1.5-cm-long vector ± 0.2 cm, directed east from the arrowhead of the second displacement vector, and labeled 0.30 km.

71 [1] Allow 1 credit for a vector drawn from P to the tip of the arrowhead of the student’s drawn vector in the previous response, and labeled R.

Example of a 1-credit response for question 70 and a 1-credit response for question 71:

![Diagram showing vectors](image)

Note: Deduct only 1 credit for missing labels and/or arrowheads for questions 70 and 71.

72 [1] Allow 1 credit for the equation and substitution with units. Refer to *Scoring Criteria for Calculations* in this rating guide.

Examples of 1-credit responses:

$$\bar{v} = \frac{d}{t}$$

or

$$\bar{v} = \frac{1.40 \text{ km} + 0.70 \text{ km} + 0.30 \text{ km}}{12 \text{ min}}$$

73 [1] Allow 1 credit for a correct answer with units.

Examples of 1-credit responses:

$$\bar{v} = 0.20 \text{ km/min}$$

or

$$\bar{v} = 3.3 \text{ m/s}$$

Note: Allow credit for an answer that is consistent with the student’s response to question 72. Do *not* penalize the student more than one credit for errors in units in questions 72 and 73.

74 [1] Allow 1 credit for $1.3 \text{ km} \pm 0.2 \text{ km}$ or an answer that is consistent with the student’s response to question 71.

75 [1] Allow 1 credit for $32^\circ \pm 2^\circ$ or an answer that is consistent with the student’s response to question 71 (the angle at P).
76 [1] Allow 1 credit for 35°.

77 [1] Allow 1 credit for drawing the reflected ray at an angle of 35° ± 2° to the normal.

Example of a 1-credit response:

![Diagram of a light ray reflecting at an angle of 35° ± 2° to the normal.]

Note: Allow credit for an answer that is consistent with the student’s response to question 76.
78 [1] Allow 1 credit for the equation and substitution with units. Refer to Scoring Criteria for Calculations in this rating guide.

Example of a 1-credit response:

\[n_1 \sin \theta_1 = n_2 \sin \theta_2 \]

\[\sin \theta_2 = \frac{n_1 \sin \theta_1}{n_2} \]

\[\sin \theta_2 = \frac{(1.33) \sin 35^\circ}{1.00} \]

79 [1] Allow 1 credit for the correct answer with units.

Example of a 1-credit response:

\[\theta_2 = 50^\circ \quad \text{or} \quad 49^\circ \]

Note: Allow credit for an answer that is consistent with the student’s response to question 78. Do not penalize the student more than 1 credit for errors in units in questions 78 and 79.

80 [1] Allow 1 credit for frequency, period, phase, color, or transverse.
81 [1] Allow 1 credit for 182 J.

82 [1] Allow 1 credit for the equation and substitution with units. Refer to Scoring Criteria for Calculations in this rating guide.

Example of a 1-credit response:

\[\Delta PE = mg\Delta h \]
\[\Delta PE = (40.0 \text{ N})(3.00 \text{ m}) \]

83 [1] Allow 1 credit for the correct answer with units.

Example of a 1-credit response:

\[\Delta PE = 120. \text{ J} \]

Note: Allow credit for an answer that is consistent with the student’s response to question 82. Do not penalize the student more than 1 credit for errors in units in questions 82 and 83.

84 [1] Allow 1 credit for indicating that the kinetic energy of the crate is constant.

85 [1] Allow 1 credit for indicating that the internal energy of the crate increases.

Note: Allow credit for an answer that is consistent with the student’s responses to questions 81 and 83.
Regents Examination in Physical Setting/Physics

June 2013

Chart for Converting Total Test Raw Scores to Final Examination Scores (Scale Scores)

The Chart for Determining the Final Examination Score for the June 2013 Regents Examination in Physical Setting/Physics will be posted on the Department’s web site at: http://www.p12.nysed.gov/assessment/ on Thursday, June 13, 2013. Conversion charts provided for previous administrations of the Regents Examination in Physical Setting/Physics must NOT be used to determine students’ final scores for this administration.

Online Submission of Teacher Evaluations of the Test to the Department

Suggestions and feedback from teachers provide an important contribution to the test development process. The Department provides an online evaluation form for State assessments. It contains spaces for teachers to respond to several specific questions and to make suggestions. Instructions for completing the evaluation form are as follows:

2. Select the test title.
3. Complete the required demographic fields.
4. Complete each evaluation question and provide comments in the space provided.
5. Click the SUBMIT button at the bottom of the page to submit the completed form.
Map to Core Curriculum

June 2013 Physical Setting/Physics

Question Numbers

<table>
<thead>
<tr>
<th>Key Ideas</th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math Key Idea 1</td>
<td>2, 3, 4, 5, 6, 8, 11, 12, 13, 14, 20, 24, 29, 30, 31, 32, 33, 34</td>
<td>37, 38, 39, 40, 41, 42, 51, 52, 54, 55, 57, 58, 59, 60, 61, 62, 63</td>
<td>69, 72, 73, 74, 78, 79, 81, 82, 83</td>
</tr>
<tr>
<td>Math Key Idea 2</td>
<td>10</td>
<td>45, 47</td>
<td></td>
</tr>
<tr>
<td>Math Key Idea 3</td>
<td></td>
<td>50, 57, 58, 59, 64, 65</td>
<td></td>
</tr>
<tr>
<td>Sci. Inq. Key Idea 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sci. Inq. Key Idea 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sci. Inq. Key Idea 3</td>
<td></td>
<td>38, 44, 46</td>
<td></td>
</tr>
<tr>
<td>Eng. Des. Key Idea 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard 2			
Key Idea 1			
Key Idea 2			

Standard 6			
Key Idea 1			
Key Idea 2		43	
Key Idea 3		36, 39	66
Key Idea 4		23	
Key Idea 5			
Key Idea 6			

Standard 7			
Key Idea 1			
Key Idea 2			

Standard 4 Process Skills

4.1		53, 56	84
4.3		48, 49	77, 80
5.1	14	38, 57, 58, 59	70, 71, 74, 75
5.3	34		67, 68

Standard 4			
4.1	14, 15, 21, 27, 28, 30, 31, 32	39, 41, 42, 45, 51, 52, 56, 60, 61, 62	81, 82, 83, 84, 85
4.3	16, 17, 18, 19, 20, 22, 24, 25, 26, 29	48, 49, 53	76, 77, 78, 79, 80
5.1	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 23	37, 38, 40, 43, 46, 47, 54, 55, 57, 58, 59, 63, 64, 65	70, 71, 72, 73, 74, 75
5.3	33, 34, 35	44, 50	66, 67, 68, 69