FOR TEACHERS ONLY

The University of the State of New York
REGENTS HIGH SCHOOL EXAMINATION

PHYSICAL SETTING/PHYSICS

Thursday, June 15, 2017 — 1:15 to 4:15 p.m., only

SCORING KEY AND RATING GUIDE

Directions to the Teacher:
Refer to the directions on page 2 before rating student papers. Updated information regarding the rating of this examination may be posted on the New York State Education Department’s web site during the rating period. Check this web site at: http://www.p12.nysed.gov/assessment/ and select the link “Scoring Information” for any recently posted information regarding this examination. This site should be checked before the rating process for this examination begins and several times throughout the Regents Examination period.

Part A and Part B–1

Allow 1 credit for each correct response.

<table>
<thead>
<tr>
<th>Part A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2</td>
</tr>
<tr>
<td>2 3</td>
</tr>
<tr>
<td>3 4</td>
</tr>
<tr>
<td>4 1</td>
</tr>
<tr>
<td>5 4</td>
</tr>
<tr>
<td>6 2</td>
</tr>
<tr>
<td>7 3</td>
</tr>
<tr>
<td>8 1</td>
</tr>
<tr>
<td>9 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part B–1</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 2</td>
</tr>
<tr>
<td>37 4</td>
</tr>
<tr>
<td>38 1</td>
</tr>
<tr>
<td>39 4</td>
</tr>
</tbody>
</table>
Directions to the Teacher

Follow the procedures below for scoring student answer papers for the Regents Examination in Physical Setting/Physics. Additional information about scoring is provided in the publication Information Booklet for Scoring Regents Examinations in the Sciences, which may be found on the Department web site at http://www.p12.nysed.gov/assessment/science/science-hs.html.

Do not attempt to correct the student’s work by making insertions or changes of any kind. If the student’s responses for the multiple-choice questions are being hand scored prior to being scanned, the scorer must be careful not to make any marks on the answer sheet except to record the scores in the designated score boxes. Marks elsewhere on the answer sheet will interfere with the accuracy of the scanning.

Allow 1 credit for a correct response to each item.

At least two science teachers must participate in the scoring of each student’s responses to the Part B–2 and Part C open-ended questions on a student’s paper. Each of these teachers should be responsible for scoring a selected number of the open-ended questions on each answer paper. No one teacher is to score more than approximately one-half of the open-ended questions on a student’s answer paper. Teachers may not score their own students’ answer papers.

Students’ responses must be scored strictly according to the Scoring Key and Rating Guide. For open-ended questions, credit may be allowed for responses other than those given in the rating guide if the response is a scientifically accurate answer to the question and demonstrates adequate knowledge, as indicated by the examples in the rating guide. On the student’s separate answer sheet, for each question, record the number of credits earned and the teacher’s assigned rater/scorer letter.

Fractional credit is not allowed. Only whole-number credit may be given for a response. If the student gives more than one answer to a question, only the first answer should be rated. Units need not to be given when the wording of the question allows such omissions.

For hand scoring, raters should enter the scores earned in the appropriate boxes printed on the separate answer sheet. Next, the rater should add these scores and enter the total in the box labeled “Total Raw Score.” Then the student’s raw score on the written test should be converted to a scale score by using the conversion chart that will be posted on the Department’s web site at: http://www.p12.nysed.gov/assessment/ on Thursday, June 15, 2017. The student’s scale score should be entered in the labeled box labeled “Scale Score” on the student’s answer booklet. The scale score is the student’s final examination score.

Schools are not permitted to rescore any of the open-ended questions on this exam after each question has been rated once, regardless of the final exam score. Schools are required to ensure that the raw scores have been added correctly and that the resulting scale score has been determined accurately.

Because scale scores corresponding to raw scores in the conversion chart may change from one administration to another, it is crucial that for each administration, the conversion chart provided for that administration be used to determine the student’s final score.

Scoring Criteria for Calculations

For each question requiring the student to *show all calculations, including the equation and substitution with units*, apply the following scoring criteria:

- Allow 1 credit for the equation and substitution of values with units. If the equation and/or substitution with units is not shown, do not allow this credit. Allow credit if the student has listed the values with units and written a correct equation.

- Allow 1 credit for the correct answer (number and unit). If the number is given without the unit, allow credit if the credit for units was previously deducted for this calculation problem.

- Penalize a student only once per calculation problem for incorrect or omitted units.

- Allow credit if the answer is not expressed with the correct number of significant figures.
Part B–2

51 [1] Allow 1 credit for drawing at least four magnetic field lines of force around a bar magnet. Arrowheads must be drawn to indicate the direction of the field toward the south. Field lines must not cross.

Example of a 1-credit response:

![Diagram of magnetic field lines around a bar magnet with arrowheads indicating the direction of the field toward the south.]

Note: Do not penalize the student if the field lines do not touch the magnet. Ignore any field lines drawn inside the bar magnet.

52 [1] Allow 1 credit for 9 or nine.

53 [1] Allow 1 credit for 0 or zero.

54 [1] Allow 1 credit for strong force, strong, strong nuclear force, or strong interaction. Do not allow credit for nuclear force.

55 [1] Allow 1 credit for 2d.

56 [1] Allow 1 credit for the equation and substitution with units. Refer to Scoring Criteria for Calculations in this rating guide.

Examples of 1-credit responses:

\[
W = VIt \\
\frac{t}{V} = \frac{W}{It} \\
t = \frac{3 \times 10^5 \text{ J}}{(120 \text{ V})(0.71 \text{ A})} \\
\frac{P}{W} = t \\
t = 3.0 \times 10^5 \text{ J} \\
\frac{85 \text{ W}}{t}
\]

57 [1] Allow 1 credit for the correct answer with units or for an answer, with units, that is consistent with the student’s response to question 56.

Examples of 1-credit responses:

\[t = 3.5 \times 10^3 \text{ s} \quad \text{or} \quad 3500 \text{ s} \]

Note: Do not penalize the student more than 1 credit for errors in units in questions 56 and 57.
58 [1] Allow 1 credit for drawing a transverse wave with an amplitude of 2.0 cm ± 0.2 cm.

59 [1] Allow 1 credit for drawing a transverse wave with a wavelength of 6.0 cm ± 0.2 cm.

Examples of 2-credit responses for questions 58 and 59:

Note: Allow credit for a properly drawn wave which does not start at 0, 0.
Allow credit for a properly drawn wave which is not a sine wave.

60 [1] Allow 1 credit for 350 N/m.

61 [1] Allow 1 credit for 1.1 \times 10^{-8} \text{ kg}.

62 [1] Allow 1 credit for indicating the speed of light is greater than the speed of sound.
63 [1] Allow 1 credit for the equation and substitution with units. Refer to Scoring Criteria for Calculations in this rating guide.

Example of a 1-credit response:

\[I = \frac{\Delta q}{t} \]

\[I = \frac{28 \text{ C}}{1.5 \times 10^{-3} \text{ s}} \]

64 [1] Allow 1 credit for the correct answer with units or for an answer, with units, that is consistent with the student’s response to question 63.

Examples of 1-credit responses:

\[I = 1.9 \times 10^4 \text{ A} \quad \text{or} \quad I = 19 000 \text{ A} \]

Note: Do not penalize the student more than 1 credit for errors in units in questions 63 and 64.

65 [1] Allow 1 credit for drawing a square wave between A and B with a displacement of +0.6 m.

Example of a 1-credit response:

![Graph of square wave between A and B with displacement +0.6 m]
Part C

66 [1] Allow 1 credit for $3.63 \times 10^4 \text{ J}$ or $36\,300 \text{ J}$.

67 [1] Allow 1 credit for the equation and substitution with units. Refer to *Scoring Criteria for Calculations* in this rating guide.

Example of a 1-credit response:

$$\Delta PE = mg\Delta h$$

$$\Delta PE = (72.0 \text{ kg})(9.81 \text{ m/s}^2)(40.0 \text{ m})$$

68 [1] Allow 1 credit for the correct answer with units or for an answer, with units, that is consistent with the student’s response to question 67.

Examples of 1-credit responses:

$$\Delta PE = 28\,300 \text{ J} \quad \text{or} \quad 2.83 \times 10^4 \text{ J}$$

Note: Do *not* penalize the student more than 1 credit for errors in units in questions 67 and 68.

69 [1] Allow 1 credit for indicating that the internal energy increases.

Note: Allow credit for an answer that is consistent with the student’s response to questions 66 and 68.

70 [1] Allow 1 credit for indicating that the total mechanical energy increases.
71 [1] Allow 1 credit for the equation and substitution with units. Refer to Scoring Criteria for Calculations in this rating guide.

Examples of 1-credit responses:

\[
\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} \quad \text{or} \quad R = \frac{V}{I} \quad \text{or} \quad R_{eq} = \frac{R_1 R_2}{R_1 + R_2}
\]

\[
\frac{1}{R_{eq}} = \frac{1}{15 \, \Omega} + \frac{1}{30 \, \Omega} \quad \text{or} \quad R = \frac{60 \, \text{V}}{6.0 \, \text{A}} \quad \text{or} \quad R_{eq} = \frac{(15 \, \Omega)(30 \, \Omega)}{30 \, \Omega + 15 \, \Omega}
\]

72 [1] Allow 1 credit for the correct answer with units or for an answer, with units, that is consistent with the student’s response to question 71.

Example of a 1-credit response:

\[R_{eq} = 10. \, \Omega\]

Note: Do *not* penalize the student more than 1 credit for errors in units in questions 71 and 72.

73 [1] Allow 1 credit for 6.0 A or for an answer that is the result of 60. V divided by the student’s response to question 72.

74 [1] Allow 1 credit for the equation and substitution with units or for an answer, with units, that is consistent with the student’s responses to questions 72 and/or 73.

Examples of 1-credit responses:

\[P = \frac{V^2}{R} \quad \text{or} \quad P = I^2 R \quad \text{or} \quad P = VI\]

\[P = \frac{(60 \, \text{V})^2}{10. \, \Omega} \quad \text{or} \quad P = (6.0 \, \text{A})^2(10. \, \Omega) \quad \text{or} \quad P = (60 \, \text{V})(6.0 \, \text{A})\]

75 [1] Allow 1 credit for the correct answer with units or for an answer, with units, that is consistent with the student’s response to question 74.

Example of a 1-credit response:

\[P = 360 \, \text{W}\]

Note: Do *not* penalize the student more than 1 credit for errors in units in questions 74 and 75.

76 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

— The current would remain the same.
— no effect
77 [1] Allow 1 credit for the equation and substitution with units. Refer to Scoring Criteria for Calculations in this rating guide.

Example of a 1-credit response:

\[KE = \frac{1}{2} mv^2 \]
\[KE = \frac{1}{2} (2.50 \text{ kg})(18.0 \text{ m/s})^2 \]

78 [1] Allow 1 credit for the correct answer with units or for an answer, with units, consistent with the student’s response to question 77.

Example of a 1-credit response:

\[KE = 405 \text{ J} \]

Note: Do not penalize the student more than 1 credit for errors in units in questions 77 and 78.

79 [1] Allow 1 credit for the equation and substitution with units. Refer to Scoring Criteria for Calculations in this rating guide.

Examples of 1-credit responses:

\[a_c = \frac{v^2}{r} \]
\[F_c = ma_c \]
\[F_c = ma_c \]
\[F_c = \frac{mv^2}{r} \]
\[F_c = \frac{(2.50 \text{ kg})(13.0 \text{ m/s}^2)}{25.0 \text{ m}} \]

80 [1] Allow 1 credit for the correct answer with units or for an answer, with units, consistent with the student’s response to question 79.

Examples of 1-credit responses:

\[F_c = 32.4 \text{ N} \quad \text{or} \quad 32.5 \text{ N} \]

Note: Do not penalize the student more than 1 credit for errors in units in questions 79 and 80.
81 [1] Allow 1 credit for the equation and substitution with units. Refer to Scoring Criteria for Calculations in this rating guide.

Example of a 1-credit response:

\[v = f \lambda, \]

\[\lambda = \frac{v}{f} \]

\[\lambda = \frac{3.00 \times 10^8 \text{ m/s}}{5.09 \times 10^{14} \text{ Hz}} \]

82 [1] Allow 1 credit for the correct answer with units or for an answer, with units, that is consistent with the student's response to question 81.

Example of a 1-credit response:

\[\lambda = 5.89 \times 10^{-7} \text{ m} \]

Note: Do not penalize the student more than 1 credit for errors in units in questions 81 and 82.

83 [1] Allow 1 credit for 50.° ± 2°.

84 [1] Allow 1 credit for the equation and substitution with units or for an answer, with units, that is consistent with the student's response to question 83. Refer to Scoring Criteria for Calculations in this rating guide.

Examples of 1-credit responses:

\[n_1 \sin \theta_1 = n_2 \sin \theta_2 \]

\[n_1 = \frac{n_2 \sin \theta_2}{\sin \theta_1} \]

or

\[n = \frac{1}{\sin \theta c} \]

\[n = \frac{1}{\sin 50.°} \]

\[n_1 = \frac{(1.00)(\sin 90.°)}{\sin 50.°} \]

85 [1] Allow 1 credit for the correct answer with units or for an answer, with units, that is consistent with the student's response to question 84.

Example a of 1-credit response:

\[n = 1.3 \]

Note: Do not penalize the student more than 1 credit for errors in units in questions 84 and 85.
The Chart for Determining the Final Examination Score for the June 2017 Regents Examination in Physical Setting/Physics will be posted on the Department’s web site at: http://www.p12.nysed.gov/assessment/ on Thursday, June 15, 2017. Conversion charts provided for previous administrations of the Regents Examination in Physical Setting/Physics must NOT be used to determine students’ final scores for this administration.

Online Submission of Teacher Evaluations of the Test to the Department

Suggestions and feedback from teachers provide an important contribution to the test development process. The Department provides an online evaluation form for State assessments. It contains spaces for teachers to respond to several specific questions and to make suggestions. Instructions for completing the evaluation form are as follows:

2. Select the test title.
3. Complete the required demographic fields.
4. Complete each evaluation question and provide comments in the space provided.
5. Click the SUBMIT button at the bottom of the page to submit the completed form.
Map to Core Curriculum

June 2017 Physical Setting/Physics

Question Numbers

<table>
<thead>
<tr>
<th>Key Ideas</th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math Key Idea 1</td>
<td>3, 4, 5, 6, 7, 10, 11, 13, 17, 19, 21, 22, 28, 32</td>
<td>40, 42, 43, 48, 49, 52, 53, 55, 56, 57, 60, 61, 63, 64</td>
<td>66, 67, 68, 70, 71, 72, 73, 74, 75, 79, 80, 81, 82, 83, 84, 85</td>
</tr>
<tr>
<td>Math Key Idea 2</td>
<td></td>
<td>44, 65</td>
<td></td>
</tr>
<tr>
<td>Math Key Idea 3</td>
<td></td>
<td>38, 49</td>
<td></td>
</tr>
<tr>
<td>Science Inquiry Key Idea 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science Inquiry Key Idea 2</td>
<td></td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Science Inquiry Key Idea 3</td>
<td>33</td>
<td>41, 50, 52</td>
<td></td>
</tr>
<tr>
<td>Engineering Design Key Idea 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 2</td>
<td></td>
<td>47, 48, 65</td>
<td>69, 70, 76</td>
</tr>
<tr>
<td>Key Idea 3</td>
<td></td>
<td>36, 63, 64</td>
<td></td>
</tr>
<tr>
<td>Key Idea 4</td>
<td></td>
<td>40</td>
<td>79, 80</td>
</tr>
<tr>
<td>Key Idea 5</td>
<td></td>
<td>38, 39, 44, 56, 57</td>
<td>66</td>
</tr>
<tr>
<td>Key Idea 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard 4 Process Skills</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td>39, 47, 51</td>
<td>69, 76, 77, 78</td>
</tr>
<tr>
<td>4.3</td>
<td>29</td>
<td>45, 46, 58, 59, 61, 65</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>2, 12</td>
<td>38, 60</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Standard 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>13, 18, 19, 20, 21, 22, 27, 35</td>
<td>39, 47, 51, 56, 57, 63, 64</td>
<td>66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78</td>
</tr>
<tr>
<td>4.3</td>
<td>9, 17, 23, 24, 25, 26, 28, 29</td>
<td>45, 46, 50, 58, 59, 62, 65</td>
<td>81, 82, 83, 84, 85</td>
</tr>
<tr>
<td>5.1</td>
<td>1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 32, 33, 34</td>
<td>36, 37, 38, 40, 41, 43, 49, 55, 60</td>
<td>79, 80</td>
</tr>
<tr>
<td>5.3</td>
<td>16, 30, 31</td>
<td>42, 44, 48, 52, 53, 54, 61</td>
<td></td>
</tr>
</tbody>
</table>