Directions to the Teacher:
Refer to the directions on page 3 before rating student papers. Updated information regarding the rating of this examination may be posted on the New York State Education Department’s web site during the rating period. Check this web site http://www.emsc.nysed.gov/osa/ and select the link “Examination Scoring Information” for any recently posted information regarding this examination. This site should be checked before the rating process for this examination begins and several times throughout the Regents examination period.

Part A and Part B–1
Allow 1 credit for each correct response.

<table>
<thead>
<tr>
<th>Part A</th>
<th>Part B–1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 . . . 4 . . .</td>
<td>36 . . . 1 . . .</td>
</tr>
<tr>
<td>2 . . . 3 . . .</td>
<td>37 . . . 3 . . .</td>
</tr>
<tr>
<td>3 . . . 2 . . .</td>
<td>38 . . . 1 . . .</td>
</tr>
<tr>
<td>4 . . . 2 . . .</td>
<td>39 . . . 1 . . .</td>
</tr>
<tr>
<td>5 . . . 4 . . .</td>
<td>40 . . . 1 . . .</td>
</tr>
<tr>
<td>6 . . . 4 . . .</td>
<td>41 . . . 2 . . .</td>
</tr>
<tr>
<td>7 . . . 2 . . .</td>
<td>42 . . . 4 . . .</td>
</tr>
<tr>
<td>8 . . . 4 . . .</td>
<td>43 . . . 2 . . .</td>
</tr>
<tr>
<td>9 . . . 1 . . .</td>
<td>44 . . . 3 . . .</td>
</tr>
<tr>
<td>10 . . . 3 . . .</td>
<td>45 . . . 1 . . .</td>
</tr>
<tr>
<td>11 . . . 2 . . .</td>
<td>46 . . . 4 . . .</td>
</tr>
<tr>
<td>12 . . . 4 . . .</td>
<td>47 . . . 4 . . .</td>
</tr>
<tr>
<td>13 . . . 3 . . .</td>
<td>48 . . . 1 . . .</td>
</tr>
<tr>
<td>14 . . . 1 . . .</td>
<td>49 . . . 4 . . .</td>
</tr>
<tr>
<td>15 . . . 4 . . .</td>
<td>4 . . .</td>
</tr>
<tr>
<td>16 . . . 2 . . .</td>
<td></td>
</tr>
</tbody>
</table>
Directions to the Teacher

Follow the procedures below for scoring student answer papers for the Physical Setting/Physics examination. Additional information about scoring is provided in the publication Information for Scoring Regents Examinations in the Sciences.

Use only red ink or red pencil in rating Regents papers. Do not attempt to correct the student’s work by making insertions or changes of any kind.

On the detachable answer sheet for Part A and Part B–1, indicate by means of a checkmark each incorrect or omitted answer. In the box provided at the end of each part, record the number of questions the student answered correctly for that part.

Students’ responses must be scored strictly according to the Scoring Key and Rating Guide. For open-ended questions, credit may be allowed for responses other than those given in the rating guide if the response is a scientifically accurate answer to the question and demonstrates adequate knowledge as indicated by the examples in the rating guide.

Fractional credit is not allowed. Only whole-number credit may be given to a response. Units need not be given when the wording of the questions allows such omissions.

Raters should enter the scores earned for Part A, Part B–1, Part B–2, and Part C on the appropriate lines in the box printed on the answer booklet, and then should add these four scores and enter the total in the box labeled “Total Written Test Score.” Then, the student’s raw score on the written test should be converted to a scaled score by using the conversion chart that will be posted on the Department’s web site: http://www.emsc.nysed.gov/osa/ on Thursday, January 24, 2008. The student’s scaled score should be entered in the labeled box on the student’s answer booklet. The scaled score is the student’s final examination score.

All student answer papers that receive a scaled score of 60 through 64 must be scored a second time. For the second scoring, a different committee of teachers may score the student’s paper or the original committee may score the paper, except that no teacher may score the same open-ended questions that he/she scored in the first rating of the paper. The school principal is responsible for assuring that the student’s final examination score is based on a fair, accurate, and reliable scoring of the student’s answer paper.

Because scaled scores corresponding to raw scores in the conversion chart may change from one examination to another, it is crucial that for each administration, the conversion chart provided for that administration be used to determine the student’s final score.
Please refer to the Department publication *Regents Examination in Physical Setting/Physics: Rating Guide for Parts B–2 and C*. This publication can be found on the New York State Education Department web site http://www.emsc.nysed.gov/osa/scire/scirearch/phyratg02.pdf. Teachers should become familiar with this guide before rating students’ papers.

Scoring Criteria for Calculations

For each question requiring the student to show all calculations, including the equation and substitution with units, apply the following scoring criteria:

- Allow 1 credit for the equation and substitution of values with units. If the equation and/or substitution with units is not shown, do not allow this credit.
- Allow 1 credit for the correct answer (number and unit). If the number is given without the unit, do not allow this credit.
- Penalize a student only once per equation for omitting units.
- Allow full credit even if the answer is not expressed with the correct number of significant figures.

Part B–2

50 [2] Allow a maximum of 2 credits, allocated as follows:

- Allow 1 credit for setting expressions for elastic potential energy and kinetic energy equal.
- Allow 1 credit for correctly solving for k.

Examples of 2-credit responses:

\[
PE_s = KE \\
\frac{1}{2} kx^2 = \frac{1}{2} mv^2 \\
k = \frac{mv^2}{x^2}
\]

or

\[
\frac{1}{2} kx^2 = \frac{1}{2} mv^2 \\
k = \frac{mv^2}{x^2}
\]

51 [1] Allow 1 credit for 1.5 m/s.

Example of a 2-credit response:

\[KE = \frac{1}{2}mv^2 \]

\[KE = \frac{1}{2}(75\text{ kg})(1.5\text{ m/s})^2 \]

\[KE = 84 \text{ J} \]

Note: Allow credit for an answer that is consistent with the student’s response to question 51.

53 [1] Allow 1 credit for indicating that the resistance increases.

54 [1] Allow 1 credit for indicating that the resistivity remains the same or there is no effect.

55 [1] Allow 1 credit for a straight line showing decreasing kinetic energy and increasing work.

Example of a 1-credit response:

![Diagram showing decreasing kinetic energy and increasing work](attachment:graph.png)
56 [1] Allow 1 credit for $35^\circ \pm 2^\circ$.

57 [1] Allow 1 credit for drawing the reflected ray at an angle of reflection of $35^\circ \pm 2^\circ$.

Example of a 1-credit response:

![Diagram showing a red light ray incident on a mirror, reflected at 55°, and the normal line.](attachment:image.png)

Note: The normal and the arrowhead need *not* be drawn to receive credit.
Allow credit for an answer that is consistent with the student’s response to question 56.

58 [1] Allow 1 credit for drawing an arrow at X toward the ground and perpendicular to the ground.

59 [1] Allow 1 credit for drawing an arrow at Y toward the ground and perpendicular to the ground.

Example of a 2-credit response for questions 58 and 59:

![Diagram showing a ball moving along a horizontal field with forces](attachment:image.png)

Note: The arrows need *not* be labeled to receive credit.
60 [1] Allow 1 credit for 7500 N.

Example of a 2-credit response:

\[F_c = ma_c \quad \text{and} \quad a_c = \frac{v^2}{r} \]

\[F_c = \frac{mv^2}{r} \]

\[F_c = \frac{(5.98 \times 10^{-24} \text{ kg})(3.00 \times 10^4 \text{ m/s})^2}{1.5 \times 10^{11} \text{ m}} \]

\[F_c = 3.59 \times 10^{22} \text{ N} \]

62 [1] Allow 1 credit for indicating the correct charge on each particle.

Example of a 1-credit response:

\[_{-1}e \rightarrow _{-1}e + _{0}e + _{0}e \]

[7] [OVER]
Part C

63 [1] Allow 1 credit for marking an appropriate scale.

64 [1] Allow 1 credit for correctly plotting all points ± 0.3 grid space.

65 [1] Allow 1 credit for drawing the line or curve of best fit.

Example of a 3-credit response for questions 63 through 65:

![Graph showing speed vs. height above Earth's surface]

66 [1] Allow 1 credit for 15.7 m/s ± 0.3 m/s or an answer that is consistent with the student's graph.
67 [2] Allow a maximum of 2 credits, allocated as follows:

- Allow 1 credit for drawing a complete circuit, including a source of potential difference.
- Allow 1 credit for connecting resistors with an equivalent resistance of 15 Ω.

Example of a 2-credit response:

![Circuit Diagram]

68 [2] Allow a maximum of 2 credits, allocated as follows:

- Allow 1 credit for drawing a wave with smaller amplitude.
- Allow 1 credit for drawing a wave with the same wavelength.

Example of a 2-credit response:

![Wave Diagram]

Note: Waves need not be in phase to receive credit.
69 [1] Allow 1 credit for drawing any two points horizontally across from each other and separated by one or two wavelengths.

Example of a 1-credit response:

![Wave form diagram with points P and P separated by 1.50 x 10^-6 m]

Note: The points need *not* be labeled to receive credit.

70 [1] Allow 1 credit for visible light or green light.

Example of a 2-credit response:

\[v_f^2 = v_i^2 + 2ad \]

\[d = \frac{v_f^2 - v_i^2}{2a} \]

\[d = \frac{(0 \text{ m/s})^2 - (70. \text{ m/s})^2}{2(-2.0 \text{ m/s}^2)} \]

\[d = 1200 \text{ m} \]
72 [2] Allow a maximum of 2 credits, allocated as follows:

- Allow 1 credit for a direction south.
- Allow 1 credit for a vector drawn 4.0 cm ± 0.2 cm long.

Example of a 2-credit response:

Note: The vector need not begin at point P to receive this credit.

Example of a 2-credit response:

\[F_g = \frac{Gm_1m_2}{r^2} \]

\[F_g = \left(\frac{6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2 \cdot (1.90 \times 10^{27} \text{ kg}) \cdot (8.93 \times 10^{22} \text{ kg})}{(4.22 \times 10^8 \text{ m})^2} \right) \]

\[F_g = 6.35 \times 10^{22} \text{ N} \]

Examples of 2-credit responses:

\[a = \frac{F_{\text{net}}}{m} \]
\[a = \frac{6.35 \times 10^{22} \text{ N}}{8.93 \times 10^{22} \text{ kg}} \]
\[a = 0.711 \text{ m/s}^2 \quad \text{or} \quad a = 0.711 \text{ N/kg} \]

or

\[a = \frac{G \frac{m_1 m_2}{r^2}}{} \]
\[a = \frac{6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2 \left(1.90 \times 10^{-27} \text{ kg}\right)}{(4.22 \times 10^8 \text{ m})^2} \]
\[a = 0.712 \text{ m/s}^2 \]

Note: Allow 1 credit for an answer that is consistent with the student’s response to question 73.

75 [1] Allow 1 credit for 8.82 eV.

76 [1] Allow 1 credit for \(1.41 \times 10^{-18} \text{ J}\) or an answer that is consistent with the student’s response to question 75.
Submitting Teacher Evaluations of the Test to the Department

Suggestions and feedback from teachers provide an important contribution to the test development process. The Department provides an online evaluation form for State assessments. It contains spaces for teachers to respond to several specific questions and to make suggestions. Instructions for completing the evaluation form are as follows:

2. Select the test title.

3. Complete the required demographic fields.

4. Complete each evaluation question and provide comments in the space provided.

5. Click the SUBMIT button at the bottom of the page to submit the completed form.
Map to Core Curriculum

January 2008 Physical Setting/Physics

Question Numbers

<table>
<thead>
<tr>
<th>Key Ideas</th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math Key Idea 1</td>
<td>2,3,4,6,11,15,16,17,18,19,20,22,25,26,27,28,30</td>
<td>39,42,43,46,47,50,51,52,54,56,57,61</td>
<td>63,64,65,70,71,72,73,74,76</td>
</tr>
<tr>
<td>Math Key Idea 2</td>
<td>21</td>
<td>41,48,55</td>
<td>66</td>
</tr>
<tr>
<td>Math Key Idea 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sci. Inq. Key Idea 1</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sci. Inq. Key Idea 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eng. Des. Key Idea 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 1</td>
<td></td>
<td>53,54,58,59</td>
<td></td>
</tr>
<tr>
<td>Key Idea 2</td>
<td></td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Key Idea 3</td>
<td></td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Key Idea 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 5</td>
<td></td>
<td></td>
<td>63,64,65,66</td>
</tr>
<tr>
<td>Key Idea 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 1</td>
<td>12</td>
<td>39,46</td>
<td>71,72</td>
</tr>
<tr>
<td>Key Idea 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard 4 Process Skills</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td></td>
<td>49</td>
<td>68</td>
</tr>
<tr>
<td>5.1</td>
<td>8,10</td>
<td>38,44,58,59,60</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Standard 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>14,15,16,17,18,19,20,21,22</td>
<td>36,41,42,46,50,52,53,54</td>
<td>67</td>
</tr>
<tr>
<td>4.3</td>
<td>23,24,25,26,27,28,29,31,32,34</td>
<td>47,49,56,57</td>
<td>68,69,70</td>
</tr>
<tr>
<td>5.1</td>
<td>1,2,3,4,5,6,7,8,9,10,11,12,13</td>
<td>38,39,40,43,44,51,58,59,60</td>
<td>63,64,65,66,71,72,73,74</td>
</tr>
<tr>
<td>5.3</td>
<td>30,33,35</td>
<td>45,48,62</td>
<td>75,76</td>
</tr>
</tbody>
</table>