Question 25

Is the product of $\sqrt{1024}$ and -3.4 rational or irrational? Explain your answer.

\[
\sqrt{1024} = 32
\]

\[
32 \cdot -3.4 = -108.8
\]

The answer is **rational** because when you multiply $\sqrt{1024}$ and -3.4 you get -108.8 which can be represented as a fraction.

Score 2: The student gave a complete and correct response.
Question 25

25 Is the product of $\sqrt{1024}$ and -3.4 rational or irrational? Explain your answer.

$\sqrt{1024} = 32$ \hspace{1cm} 32 \times -3.4 = -108.8$

The product of $\sqrt{1024}$ and -3.4 is rational because -108.8 is a terminating non-repeating decimal.

Score 2: The student gave a complete and correct response.
25 Is the product of $\sqrt{1024}$ and -3.4 rational or irrational? Explain your answer.

$$\sqrt{1024} \times -3.4 = -108.8$$

Rational

Score 1: The student wrote a justification, but not an explanation.
25 Is the product of $\sqrt{1024}$ and -3.4 rational or irrational? Explain your answer.

$32 \times -3.4 = -108.8$

Score 0: The student did not state rational and did not write an explanation.
Question 25

25 Is the product of $\sqrt{1024}$ and -3.4 rational or irrational? Explain your answer.

I think this would be rational.

Score 0: The student did not write an explanation.
26 Describe the transformations performed on the graph of \(f(x) = x^2 \) to obtain the graph of \(g(x) \) when \(g(x) = (x - 3)^2 - 4 \).

\[\text{Shift down 4} \]

\[\text{Shift right 3} \]

Score 2: The student gave a complete and correct response.
26 Describe the transformations performed on the graph of \(f(x) = x^2 \) to obtain the graph of \(g(x) \) when \(g(x) = (x - 3)^2 - 4 \).

Score 1: The student only wrote the directions of the shifts correctly.
26 Describe the transformations performed on the graph of \(f(x) = x^2 \) to obtain the graph of \(g(x) \) when \(g(x) = (x - 3)^2 - 4 \).

<table>
<thead>
<tr>
<th></th>
<th>(f(x) = x^2)</th>
<th>(g(x) = (x - 3)^2 - 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>-3</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>-4</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>-3</td>
</tr>
</tbody>
</table>

\[y_1 = f(x) \quad y_2 = g(x) \]

\[y_1 \text{ vertex is } (0, 0) \]

\[y_2 \text{ vertex is } (2, -3) \]

Score 0: The student did not describe the transformations.
27 The total profit earned at a garage sale during the first five hours is modeled by the graph shown below.

\[
\frac{100 - 40}{4 - 1} = \frac{60}{3} = 20
\]

Determine the average rate of change, in dollars per hour, over the interval \(1 \leq x \leq 4\).

The average rate of change is \(\frac{20}{1}\).

Score 2: The student gave a complete and correct response.
Question 27

27 The total profit earned at a garage sale during the first five hours is modeled by the graph shown below.

Determine the average rate of change, in dollars per hour, over the interval $1 \leq x \leq 4$.

$$\frac{60 - 40}{2 - 1} = \frac{20}{1} = 20$$

Score 1: The student correctly found the rate of change over the interval $1 \leq x \leq 2$.
The total profit earned at a garage sale during the first five hours is modeled by the graph shown below.

Determine the average rate of change, in dollars per hour, over the interval $1 \leq x \leq 4$.

\[
\frac{4 - 1}{100 - 40} = \frac{1}{20}
\]

Score 1: The student wrote the rate of change as \(\frac{\text{change in } x}{\text{change in } y} \).
The total profit earned at a garage sale during the first five hours is modeled by the graph shown below.

Determine the average rate of change, in dollars per hour, over the interval $1 \leq x \leq 4$.

$$\frac{2-1}{60-40} = \frac{1}{20}$$

Score 0: The student did not show enough correct work to receive any credit.
Score 2: The student gave a complete and correct response.
28 Subtract $3(x - 2y)$ from $6(x^2 - xy)$ and express your answer as a monomial.

\[3(x - 2y) - 6(x^2 - xy) \]

\[3x^2 - 6xy - 6x^2 + 6xy \]

\[-3x^2 \]

\[-4xy - 3x^2 + 6xy \]

Score 1: The student subtracted the expressions in the wrong order.
Question 28

28 Subtract $3(x^2 - 2y)$ from $6(x^2 - xy)$ and express your answer as a monomial.

\[3x^2 - 6y \quad 6x^2 - 6xy \]

\[3x^2 - 12xy \]

Score 1: The student made an error when subtracting the xy terms.
Question 28

28 Subtract $3x(x - 2y)$ from $6(x^2 - xy)$ and express your answer as a monomial.

\[
3x^2 - 6xy - 6x^2 + 6xy
\]

\[
= 3x^2
\]

Score 0: The student made multiple errors in their work.
A function is graphed on the set of axes below.

State the domain of this function.

\[-\infty < x < \infty\]

State the range of this function.

\[y \geq 3\]

Score 2: The student gave a complete and correct response.
Question 29

29 A function is graphed on the set of axes below.

State the domain of this function.

\[x = \mathbb{R} \]

State the range of this function.

\[y \geq 3 \]

Score 2: The student gave a complete and correct response.
A function is graphed on the set of axes below.

State the domain of this function.

\((-\infty, \infty)\)

State the range of this function.

\([3, \infty)\)

Score 2: The student gave a complete and correct response.
A function is graphed on the set of axes below.

State the domain of this function.

\([-\infty, \infty]\]

State the range of this function.

\([3, \infty]\)

Score 1: The student used brackets with the infinity signs instead of parentheses.
Question 29

29 A function is graphed on the set of axes below.

State the domain of this function.

\[y \geq 3 \]

State the range of this function.

\[-\infty < x < \infty \]

Score 1: The student reversed the domain and range.
29 A function is graphed on the set of axes below.

State the domain of this function.

Domain is $x > 2$.

State the range of this function.

Range is $y > 3$.

Score 0: The student wrote an incorrect domain and an incorrect inequality symbol for the range.
30 Solve $6x^2 + 5x - 6 = 0$ algebraically for the exact values of x.

\[\begin{align*}
6x^2 + 5x - 6 &= 0 \\
- b &\pm \sqrt{b^2 - 4(ac)} \\
2a &
\end{align*} \]

\[a = 6, \quad b = 5, \quad c = -6 \]

\[- \frac{5 \pm \sqrt{5^2 - 4(6)(-6)}}{2(6)} \]

\[- \frac{5 \pm \sqrt{169}}{12} \]

\[- \frac{5 \pm 13}{12} \]

Score 2: The student gave a complete and correct response.
30 Solve $6x^2 + 5x - 6 = 0$ algebraically for the exact values of x.

\[
\begin{align*}
6x^2 + 5x - 6 &= 0 \\
(3x - 2)(2x + 3) &= 0
\end{align*}
\]

\[
\begin{array}{c|c}
3x - 2 &= 0 \\
2x + 3 &= 0
\end{array}
\]

\[
\begin{align*}
x &= \frac{2}{3} \\
x &= -\frac{3}{2}
\end{align*}
\]

\[
x = \left\{ \frac{2}{3}, -\frac{3}{2} \right\}
\]

Score 2: The student gave a complete and correct response.
30 Solve $6x^2 + 5x - 6 = 0$ algebraically for the exact values of x.

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-5 \pm \sqrt{5^2 - 4(6)(-6)}}{2(6)}$$

$$\frac{-5 \pm 13}{12}$$

$$\frac{-5 + 13}{12} = \frac{8}{12} = \frac{2}{3}$$

$$\frac{-5 - 13}{12} = \frac{-18}{12} = -1.5$$

Score 1: The student did not include the negative sign in front of 1.5.
Question 30

30 Solve $6x^2 + 5x - 6 = 0$ algebraically for the exact values of x.

$$6(6x^2 + 5x - 6) = 0$$

$$x^2 + 5x - 6 = 0$$

$$(x-1)(x+6)$$

$x = -6$, $x = 1$

Score 0: The student did not show enough correct work to receive any credit.
31 Factor the expression $x^4 - 36x^2$ completely.

\[x^4 - 36x^2 \]
\[x^2(x^2 - 36) \]
\[x^2(x - 6)(x + 6) \]

Score 2: The student gave a complete and correct response.
31 Factor the expression $x^4 - 36x^2$ completely.

$$x^4 - 36x^2 = (x^2 - 6x)(x^2 + 6x) = x(x-6)(x+6)$$

Score 2: The student gave a complete and correct response.
31 Factor the expression \(x^4 - 36x^2 \) completely.

\[
\begin{align*}
\frac{x^4 - 36x^2}{x^2} &= (x^2 - 6x)(x^2 + 6x) \\
&= x^2(x + 6)(x - 6)
\end{align*}
\]

\[\frac{x + 6 = 0}{x = -6} \quad \frac{x - 6 = 0}{x = 6}\]

Score 1: The student factored correctly, but attempted to solve the factored expression as an equation.
31 Factor the expression $x^4 - 36x^2$ completely.

$$x(x^2 - 36x)$$

Score 0: The student did not show enough correct work to receive any credit.
Question 32

32 Determine the exact values of \(x \) for \(x^2 - 8x - 5 = 0 \) by completing the square.

\[
\begin{align*}
x^2 - 8x - 5 &= 0 \\
&
\text{Add } 5 \\
&
+15 +15
\end{align*}
\]
\[
\begin{align*}
x^2 - 8x &= 5 \\
&
+16 +16
\end{align*}
\]
\[
\begin{align*}
x^2 - 8x + 16 &= 21 \\
\sqrt{(x-4)^2} &= \sqrt{21} \\
(x-4) &= \pm \sqrt{21} \\
+4 &+4
\end{align*}
\]
\[
x = 4 \pm \sqrt{21}
\]

Score 2: The student gave a complete and correct response.
32 Determine the exact values of x for $x^2 - 8x - 5 = 0$ by completing the square.

$$x^2 - 8x - 5 = 0$$

$b = -8$
$a = 1$
$c = -5$

$$\frac{b \pm \sqrt{(-8)^2 - 4(1)(-5)}}{2(1)}$$

$$\frac{8 \pm \sqrt{64 - (-20)}}{2}$$

$$\frac{8 \pm \sqrt{84}}{2}$$

Score 1: The student did not use the method of completing the square.
32 Determine the exact values of x for $x^2 - 8x - 5 = 0$ by completing the square.

\[x^2 - 8x + \frac{b^2}{4} = 5 + \frac{b^2}{4} \]

\[x^2 - 8x + 16 = 5 + 16 \]

\[(x-4)^2 = 21 \]

\[x-4 = \pm\sqrt{21} \]

\[x = 4 \pm\sqrt{21} \]

Score 1: The student did not take the square root of 21.
Question 32

32 Determine the exact values of x for $x^2 - 8x - 5 = 0$ by completing the square.

$$x^2 - 8x - 5 = 0$$

$$\left(x^2 - 8x + 16\right) - 16 - 5 = 0$$

$$(x - 4)^2 = 21$$

$$x - 4 = \pm \sqrt{21}$$

$$x = 4 \pm \sqrt{21}$$

$$4 + \sqrt{21} = 8.58$$

$$4 - \sqrt{21} = -3.58$$

Score 1: The student rounded off the solution.
Question 32

Determine the exact values of \(x \) for \(x^2 - 8x - 5 = 0 \) by completing the square.

\[
x^2 - 8x - 5 = 0
\
+ 5 + 5
\
\frac{8}{2} = 4 \Rightarrow (4)^2 = 16
\
x^2 - 8x + 16 = 5 + 16
\
x^2 - 8x + 16 = 21
\
(x + 4)(x - 4) = 21
\
x + 4 = 21
\frac{-4}{1}
\
x = 17
\
x - 4 = 21
4 + 4
\
x = 25

Score 0: The student did not show enough correct work to receive any credit.
33 The graph below models the height of Sam’s kite over a period of time.

![Graph of kite height over time]

Explain what the zeros of the graph represent in the context of the situation.

when the kite is on the ground.

State the time intervals over which the height of the kite is increasing.

\[0 < x < 0.5 \]
\[1 < x < 2 \]

State the maximum height, in feet, that the kite reaches.

60 ft

Score 4: The student gave a complete and correct response.
33 The graph below models the height of Sam’s kite over a period of time.

Explain what the zeros of the graph represent in the context of the situation.

The zeros represent when Sam’s kite hit the ground.

State the time intervals over which the height of the kite is increasing.

0.5 min 1-2 min

State the maximum height, in feet, that the kite reaches.

60

Score 4: The student gave a complete and correct response.
33 The graph below models the height of Sam’s kite over a period of time.

![Graph of kite height over time]

Height (in feet)

Time (in minutes)

Explain what the zeros of the graph represent in the context of the situation.

The kite is on the ground at 0 and 4 minutes.

State the time intervals over which the height of the kite is increasing.

\[[0, 0.5] \quad [1, 2]\]

State the maximum height, in feet, that the kite reaches.

Score 3: The student did not answer the maximum height.
Question 33

33 The graph below models the height of Sam’s kite over a period of time.

![Graph](image)

Height (in feet)

Time (in minutes)

Explain what the zeros of the graph represent in the context of the situation.

Start and Finish

State the time intervals over which the height of the kite is increasing.

\[0 \leq x \leq 0.5 \]
\[1 \leq x \leq 2 \]

State the maximum height, in feet, that the kite reaches.

60

Score 3: The student wrote an incorrect explanation.
Question 33

33 The graph below models the height of Sam’s kite over a period of time.

\[
\begin{array}{c|c}
\text{Height (in feet)} & \\
\hline
10 & \bullet \\
20 & \bullet \\
30 & \bullet \\
40 & \bullet \\
50 & \bullet \\
\end{array}
\]

\text{Time (in minutes)}

Explain what the zeros of the graph represent in the context of the situation.

The zeros of the graph represent when the kite started and when the kite landed.

State the time intervals over which the height of the kite is increasing.

The time is 2 minutes.

State the maximum height, in feet, that the kite reaches.

The height is 60 feet.

Score 2: The student did not state the intervals.
33 The graph below models the height of Sam’s kite over a period of time.

![Graph of kite height over time](image)

Explain what the zeros of the graph represent in the context of the situation.

State the time intervals over which the height of the kite is increasing.

every minute, it goes up 10 ft

State the maximum height, in feet, that the kite reaches.

60 ft

Score 1: The student only stated the height correctly.
The graph below models the height of Sam’s kite over a period of time.

Explain what the zeros of the graph represent in the context of the situation.

The zeros are the kite starting and ending points.

State the time intervals over which the height of the kite is increasing.

\((1.5, 30)\)

State the maximum height, in feet, that the kite reaches.

\((2, 60)\)

Score 0: The student’s explanation did not indicate time, and no further correct work was shown.
Question 34

34 On the set of axes below, graph \(f(x) = x^2 - 1 \) and \(g(x) = 3^x \).

Based on your graph, for how many values of \(x \) does \(f(x) = g(x) \)? Explain your reasoning.

1, because the \(f(x) \) and \(g(x) \) only intersect at one point.

Score 4: The student gave a complete and correct response.
34 On the set of axes below, graph \(f(x) = x^2 - 1 \) and \(g(x) = 3^x \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
<th>(g(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>-2</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>27</td>
</tr>
</tbody>
</table>

Based on your graph, for how many values of \(x \) does \(f(x) = g(x) \)? Explain your reasoning.

one

Score 3: The student did not write an explanation.
34 On the set of axes below, graph \(f(x) = x^2 - 1 \) and \(g(x) = 3^x \).

Based on your graph, for how many values of \(x \) does \(f(x) = g(x) \)? Explain your reasoning.

\[
\begin{align*}
1 \text{ value} \\
-1.13676
\end{align*}
\]

Score 2: The student did not complete the graph of \(f(x) \) and did not write an explanation.
34 On the set of axes below, graph \(f(x) = x^2 - 1 \) and \(g(x) = 3^x \).

Based on your graph, for how many values of \(x \) does \(f(x) = g(x) \)? Explain your reasoning.

\[
\begin{bmatrix} 1, 2, 3 \end{bmatrix}
\]

Score 1: The student only graphed \(f(x) \) correctly.
34 On the set of axes below, graph $f(x) = x^2 - 1$ and $g(x) = 3^x$.

Based on your graph, for how many values of x does $f(x) = g(x)$? Explain your reasoning.

none, they cross but they don't have a specific point

Score 0: The student did not show enough correct work to receive any credit.
Question 35

35 An insurance agent is looking at records to determine if there is a relationship between a driver’s age and percentage of accidents caused by speeding. The table below shows his data.

<table>
<thead>
<tr>
<th>Age (x)</th>
<th>17</th>
<th>18</th>
<th>21</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>49</td>
<td>49</td>
<td>48</td>
<td>38</td>
<td>31</td>
<td>33</td>
<td>24</td>
<td>25</td>
<td>16</td>
<td>10</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

State the linear regression equation that models the relationship between the driver’s age, x, and the percentage of accidents caused by speeding, y. Round all values to the nearest hundredth.

\[y = ax + b \]

\[y = -0.916x + 64.74 \]

State the value of the correlation coefficient to the nearest hundredth. Explain what this means in the context of the problem.

\[r = -0.98 \] The correlation coefficient means there is a strong negative correlation. In the context of this problem, it means that as there is a strong relationship between the driver’s age and accidents in that the younger you are the more likely you will experience an accident.

Score 4: The student gave a complete and correct response.
Question 35

An insurance agent is looking at records to determine if there is a relationship between a driver’s age and percentage of accidents caused by speeding. The table below shows his data.

<table>
<thead>
<tr>
<th>Age (x)</th>
<th>17</th>
<th>18</th>
<th>21</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>49</td>
<td>49</td>
<td>48</td>
<td>38</td>
<td>31</td>
<td>33</td>
<td>24</td>
<td>25</td>
<td>16</td>
<td>10</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

State the linear regression equation that models the relationship between the driver’s age, \(x \), and the percentage of accidents caused by speeding, \(y \). Round all values to the nearest hundredth.

\[-0.96x + 64.74 = y\]

State the value of the correlation coefficient to the nearest hundredth. Explain what this means in the context of the problem.

\[-0.98\]

This \# signifies how well the data follows the same pattern. The highest that the correlation coefficient can go is 1 or -1. And from this number we can conclude that because it is so close to -1 the data points closely follow the trend pattern.

Score 3: The student’s explanation was not written in context.
Question 35

An insurance agent is looking at records to determine if there is a relationship between a driver’s age and percentage of accidents caused by speeding. The table below shows his data.

<table>
<thead>
<tr>
<th>Age (x)</th>
<th>17</th>
<th>18</th>
<th>21</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>49</td>
<td>49</td>
<td>48</td>
<td>38</td>
<td>31</td>
<td>33</td>
<td>24</td>
<td>25</td>
<td>16</td>
<td>10</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

State the linear regression equation that models the relationship between the driver’s age, \(x\), and the percentage of accidents caused by speeding, \(y\). Round all values to the nearest hundredth.

\[
y = ax + b
\]

\[
a = -0.7628565979
\]

\[
b = 55.67869477
\]

\[
r = -0.9115169711
\]

State the value of the correlation coefficient to the nearest hundredth. Explain what this means in the context of the problem.

\[-0.91\]

The younger you are the better chance of you being in an accident.

Score 3: The student made a data entry error, showed full calculator display, and gave an appropriate response based on the display.
Question 35

An insurance agent is looking at records to determine if there is a relationship between a driver’s age and percentage of accidents caused by speeding. The table below shows his data.

<table>
<thead>
<tr>
<th>Age (x)</th>
<th>17</th>
<th>18</th>
<th>21</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>49</td>
<td>49</td>
<td>48</td>
<td>38</td>
<td>31</td>
<td>33</td>
<td>24</td>
<td>25</td>
<td>16</td>
<td>10</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

State the linear regression equation that models the relationship between the driver’s age, x, and the percentage of accidents caused by speeding, y. Round all values to the nearest hundredth.

\[
y = -0.916x + 64.74
\]

\[
x = 48.42
\]

48.42% of accidents are caused by speeding.

State the value of the correlation coefficient to the nearest hundredth. Explain what this means in the context of the problem.

Correlation coefficient = 0.916

This means that the accidents were most likely related to speeding.

Score 2: The student only wrote the regression equation correctly.
Question 35

An insurance agent is looking at records to determine if there is a relationship between a driver’s age and percentage of accidents caused by speeding. The table below shows his data.

<table>
<thead>
<tr>
<th>Age (x)</th>
<th>17</th>
<th>18</th>
<th>21</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>49</td>
<td>49</td>
<td>48</td>
<td>38</td>
<td>31</td>
<td>33</td>
<td>24</td>
<td>25</td>
<td>16</td>
<td>10</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

State the linear regression equation that models the relationship between the driver’s age, \(x \), and the percentage of accidents caused by speeding, \(y \). Round all values to the nearest hundredth.

\[
y = ax + b
\]

\[
a = \approx 960653.8681
\]

\[
b = 64.73845277
\]

\[
r = -0.9845644507
\]

State the value of the correlation coefficient to the nearest hundredth. Explain what this means in the context of the problem.

\[
r = -0.985
\]

Score 1: The student wrote an appropriate regression equation, but did not round correctly.
An insurance agent is looking at records to determine if there is a relationship between a driver’s age and percentage of accidents caused by speeding. The table below shows his data.

<table>
<thead>
<tr>
<th>Age (x)</th>
<th>17</th>
<th>18</th>
<th>21</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>49</td>
<td>49</td>
<td>48</td>
<td>38</td>
<td>31</td>
<td>33</td>
<td>24</td>
<td>25</td>
<td>16</td>
<td>10</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

State the linear regression equation that models the relationship between the driver’s age, x, and the percentage of accidents caused by speeding, y. Round all values to the nearest hundredth.

\[y = a + bx \]
\[y = 0.96x - 9.18 \]

State the value of the correlation coefficient to the nearest hundredth. Explain what this means in the context of the problem.

\[r = 0.99 \]
This means it will have a high correlation. It will be close to a straight line.

Score 0: The student did not show enough correct work to receive any credit.
36 Solve the system of inequalities graphically on the set of axes below. Label the solution set S.

\[2x + 3y < 9\]
\[2y \geq 4x + 6\]

Determine if the point \((0,3)\) is a solution to this system of inequalities. Justify your answer.

\[x(0) + 3(3) < 9\]
\[3(3) \geq 4(0) + 6\]
\[6 + 9 \leq 9\]
\[6 \geq 0 + 6\]
\[(3 < 9) \times \]
\[(6 \geq 6) \checkmark\]

\[\checkmark \text{ The point is not a solution to this system because } q \text{ is not less than } 9.\]

Score 4: The student gave a complete and correct response.
36 Solve the system of inequalities graphically on the set of axes below. Label the solution set S.

\[
\begin{align*}
\frac{8x+3y}{2} &< 9 \\
\frac{3y}{3} &< -2x + 9 \\
y &< -2x + 3 \\
\frac{2y}{2} &\geq 4x + 6 \\
y &\geq 2x + 3 \\
\frac{x}{2} + \frac{2y}{4} &\geq -6 \\
x &\geq 6 \\
\frac{2y}{2} &\geq \frac{4x + 6}{2} \\
y &\geq 2x + 3
\end{align*}
\]

Determine if the point (0,3) is a solution to this system of inequalities. Justify your answer.

No, because at (0,3) one line is solid and the other is dashed.

Score 4: The student gave a complete and correct response.
Question 36

36 Solve the system of inequalities graphically on the set of axes below.
Label the solution set S.

\[
\begin{align*}
2x + 3y &< 9 \\
2y &\geq 4x + 6 \\
\end{align*}
\]

\[
\begin{align*}
\frac{2y}{3} &\leq \frac{-2x + 9}{3} \\
y &\geq \frac{-2x + 9}{3} \\
\end{align*}
\]

\[
\begin{align*}
x &> \frac{-3y + 2}{2} \\
y &\geq 2x + 3 \\
\end{align*}
\]

Determine if the point $(0,3)$ is a solution to this system of inequalities. Justify your answer.

$(0,3)$ is not a solution to this system of inequalities because it is on a line that is exclusive. This means that any point on this line is not considered a solution to the system of inequalities.

\[
\begin{align*}
2x + 3y &< 9 \\
20+3(3) &< 9 \\
x &> 9 \\
11 &\notin S \\
\text{not a part of the solution set}
\end{align*}
\]

Score 3: The student did not label at least one of the lines.
Question 36

36 Solve the system of inequalities graphically on the set of axes below.
Label the solution set S.

$$2x + 3y < 9$$
$$2y \geq 4x + 6$$
$$y \geq \frac{1}{2}x + 3$$

Determine if the point $(0,3)$ is a solution to this system of inequalities. Justify your answer.

Yes it is in the solution area because it is on a solid line.

Score 2: The student graphed $2y > 4x + 6$ correctly and labeled their solution set with an S.
36 Solve the system of inequalities graphically on the set of axes below.
Label the solution set S.

\[
\begin{align*}
2x + 3y &< 0 \\
\frac{2y}{2} &\geq \frac{4x + 6}{2} \\
\end{align*}
\]

\[
y \geq -2x + 3 \quad y = \frac{x}{2x+3}
\]

Determine if the point (0,3) is a solution to this system of inequalities. Justify your answer.

\[
yes \text{ because it graphs its the intersection}
\]

Score 1: The student wrote an appropriate justification based on their graph.
36 Solve the system of inequalities graphically on the set of axes below.
Label the solution set S.

\[2x + 3y < 0 \]
\[2y \geq 4x + 6 \]

Determine if the point (0,3) is a solution to this system of inequalities. Justify your answer.

Yes, it’s on both lines

Score 0: The student did not label either graph or the solution set and wrote an incorrect explanation.
37 At an amusement park, the cost for an adult admission is \(a \), and for a child the cost is \(c \). For a group of six that included two children, the cost was $325.94. For a group of five that included three children, the cost was $256.95. All ticket prices include tax.

Write a system of equations, in terms of \(a \) and \(c \), that models this situation.

\[
\begin{align*}
2a + 4c &= 325.94 \\
3a + 5c &= 256.95
\end{align*}
\]

Use your system of equations to determine the exact cost of each type of ticket algebraically.

\[
\begin{align*}
2a + 4c &= 325.94 \\
2(3a + 2a) &= 756.95 \\
-6c - 4a &= -513.90 \\
3c + 4a &= 325.94 \\
-4c &= -197.96 \\
-4a &= 31.96 \\
4a &= 57.99 \\
a &= 57.99
\end{align*}
\]

Determine the cost for a group of four that includes three children.

\[
\begin{align*}
3c + a &= x \\
3(46.99) + 57.99 &= x \\
140.97 + 57.99 &= x \\
x &= 198.96
\end{align*}
\]

Score 6: The student gave a complete and correct response.
Question 37

37 At an amusement park, the cost for an adult admission is a, and for a child the cost is c. For a group of six that included two children, the cost was $325.94. For a group of five that included three children, the cost was $256.95. All ticket prices include tax.

Write a system of equations, in terms of a and c, that models this situation.

\[
\begin{align*}
4a + 2c &= 325.94 \\
2a + 3c &= 256.95
\end{align*}
\]

Use your system of equations to determine the exact cost of each type of ticket algebraically.

\[
\begin{align*}
4a + 2c &= 325.94 \\
-4a - 5c &= -513.90
\end{align*}
\]

\[
\begin{align*}
-3c &= -187.96 \\
\frac{-3c}{-3} &= \frac{-187.96}{-3}
\end{align*}
\]

\[
c = 62.65
\]

\[
\begin{align*}
4a + 2(62.65) &= 325.94 \\
4a + 125.30 &= 325.94 \\
-125.30 &= -125.30
\end{align*}
\]

\[
\begin{align*}
4a &= 200.64 \\
\frac{4a}{4} &= \frac{200.64}{4}
\end{align*}
\]

\[
a = 50.16
\]

Determine the cost for a group of four that includes three children.

\[
\begin{align*}
50.16 \\
62.65 \\
62.65 \\
62.65
\end{align*}
\]

\[
\begin{align*}
\text{Total} &= 50.16 + 62.65 + 62.65 + 62.65 \\
\text{Total} &= 238.11
\end{align*}
\]

Score 5: The student made an error when multiplying the second equation by 2. The value found for c was used appropriately in the rest of the problem.
At an amusement park, the cost for an adult admission is \(a \), and for a child the cost is \(c \). For a group of six that included two children, the cost was \$325.94\). For a group of five that included three children, the cost was \$256.95\). All ticket prices include tax.

Write a system of equations, in terms of \(a \) and \(c \), that models this situation:

\[
\begin{align*}
4a + 2c &= 325.94 \\
2a + 3c &= 256.95
\end{align*}
\]

Use your system of equations to determine the exact cost of each type of ticket algebraically.

\[
\begin{align*}
4a + 2c &= 325.94 \\
-4a + -6c &= -513.9
\end{align*}
\]

\[
\begin{align*}
-4c &= -187.96 \\
&= 46.99
\end{align*}
\]

\[
\begin{align*}
a &= 73.096 \\
a &= 73.096
\end{align*}
\]

Determine the cost for a group of four that includes three children.

\[
\begin{align*}
1a + 3c &= ? \\
57.74 + 3(46.99) &= 198.71
\end{align*}
\]

Score 5: The student determined \(c = 46.99 \) correctly and found an appropriate cost for a group of four based on an incorrect value for \(a \).
37 At an amusement park, the cost for an adult admission is a, and for a child the cost is c. For a group of six that included two children, the cost was $325.94. For a group of five that included three children, the cost was 256.95. All ticket prices include tax.

Write a system of equations, in terms of a and c, that models this situation.

\[4a + 2c = 325.94\]
\[2a + 3c = 256.95\]

Use your system of equations to determine the exact cost of each type of ticket algebraically.

\[\begin{align*}
4a + 2c &= 325.94 \\
-4a &= -4a \\
2c &= 325.94 - 4a \\
&= 325.94 - 4(62.97) \\
&= 325.94 - 251.88 \\
c &= 74.06
\end{align*}\]

\[\begin{align*}
2a + 3c &= 256.95 \\
2a + 3(162.97 - 2a) &= 256.95 \\
2a + 488.91 - 6a &= 256.95 \\
-4a + 488.91 &= 256.95 \\
-4a &= 256.95 - 488.91 \\
-4a &= -231.96 \\
a &= \frac{-231.96}{-4} \\
a &= 57.99
\end{align*}\]

Determine the cost for a group of four that includes three children.

\[\begin{align*}
a + 3c &= \$199.02 \\
57.99 + 3(47.61) &= \$199.02
\end{align*}\]

Score 5: The student made an error in finding the cost of a child’s ticket.
37 At an amusement park, the cost for an adult admission is \(a \), and for a child the cost is \(c \). For a group of six that included two children, the cost was $325.94. For a group of five that included three children, the cost was $256.95. All ticket prices include tax.

Write a system of equations, in terms of \(a \) and \(c \), that models this situation.

\[
\begin{align*}
4a + 2c &= 325.94 \\
2a + 3c &= 256.95
\end{align*}
\]

Use your system of equations to determine the exact cost of each type of ticket algebraically.

\[
\begin{align*}
4a + 2c &= 325.94 \\
-2(2a + 3c &= 256.95) \\
4a + 2c &= 325.94 \\
-4a - 6c &= -513.70
\end{align*}
\]

\[
\begin{align*}
-4c &= -518.76 \\
\frac{-4c}{-4} &= \frac{-518.76}{-4} \\
c &= 46.99
\end{align*}
\]

Determine the cost for a group of four that includes three children.

Score 4: The student found \(c = 46.99 \) correctly.
Question 37

At an amusement park, the cost for an adult admission is \(a \), and for a child the cost is \(c \). For a group of six that included two children, the cost was $325.94. For a group of five that included three children, the cost was $256.95. All ticket prices include tax.

Write a system of equations, in terms of \(a \) and \(c \), that models this situation.

\[
\begin{align*}
4a + 2c &= 325.94 \\
2a + 3c &= 256.95
\end{align*}
\]

Use your system of equations to determine the exact cost of each type of ticket algebraically.

\[
\begin{align*}
4a + 2c &= 325.94 \\
2a + 3c &= 256.95 \\
8c &= -187.96 \\
c &= 23.50
\end{align*}
\]

Determine the cost for a group of four that includes three children.

\[
\begin{align*}
3a + 1a &= 4a \\
3(23.50) + 92.75 &= 163.25
\end{align*}
\]

Score 3: The student wrote a correct system of equations and found an appropriate cost for a group of four based on incorrect values for \(a \) and \(c \).
At an amusement park, the cost for an adult admission is a, and for a child the cost is c. For a group of six that included two children, the cost was $325.94. For a group of five that included three children, the cost was $326.95. All ticket prices include tax.

Write a system of equations, in terms of a and c, that models this situation.

\[
\begin{align*}
6a + 3c &= 325.94 \\
4a + 2c &= 326.95
\end{align*}
\]

Use your system of equations to determine the exact cost of each type of ticket algebraically.

\[
\begin{align*}
a &= 30 \\
c &= 8.99
\end{align*}
\]

Determine the cost for a group of four that includes three children.

\[
\begin{align*}
4 \times 30 &= 120 \\
8.99 \times 3 &= 26.97
\end{align*}
\]

Score 2: The student wrote a correct system of equations.
Question 37

37 At an amusement park, the cost for an adult admission is a, and for a child the cost is c. For a group of six that included two children, the cost was $325.94. For a group of five that included three children, the cost was $256.95. All ticket prices include tax.

Write a system of equations, in terms of a and c, that models this situation.

Use your system of equations to determine the exact cost of each type of ticket algebraically.

\[a = 55.50 \quad c = 43.75 \]

Determine the cost for a group of four that includes three children.

\[
\begin{align*}
\quad & a + 3c \\
\quad & 55.50 + 3(43.75) \\
\quad & 55.50 + 131.25 \\
\quad & 186.75
\end{align*}
\]

Score 1: The student found an appropriate cost for the group of four based on values they wrote for both a and c.
37 At an amusement park, the cost for an adult admission is a, and for a child the cost is c. For a group of six that included two children, the cost was $325.94. For a group of five that included three children, the cost was $256.95. All ticket prices include tax.

Write a system of equations, in terms of a and c, that models this situation.

\[
\begin{align*}
6a + 2c & \leq 325.94 \\
5a + 3c & \leq 256.95
\end{align*}
\]

Use your system of equations to determine the exact cost of each type of ticket algebraically.

\[
\begin{align*}
5(6a + 2c & \leq 325.94) \\
-6(5a + 3c & \leq 256.95)
\end{align*}
\]

\[
\begin{align*}
30a + 10c & \leq 1629.7 \\
-30a - 18c & \leq -1541.7
\end{align*}
\]

\[
\begin{align*}
8c & \leq 3181.4 \\
c & \leq 396.425
\end{align*}
\]

Determine the cost for a group of four that includes three children.

\[
4a + 3c
\]

Score 0: The student did not show enough correct work to receive any credit.