The University of the State of New York
REGENTS HIGH SCHOOL EXAMINATION

GEOMETRY
Wednesday，January 24， 2024 －9：15 a．m．to 12：15 p．m．，only

Student Name：

\qquad

School Name： \qquad
The possession or use of any communications device is strictly prohibited when taking this examination．If you have or use any communications device，no matter how briefly，your examination will be invalidated and no score will be calculated for you．

Print your name and the name of your school on the lines above．
A separate answer sheet for Part I has been provided to you．Follow the instructions from the proctor for completing the student information on your answer sheet．

This examination has four parts，with a total of 35 questions．You must answer all questions in this examination．Record your answers to the Part I multiple－choice questions on the separate answer sheet．Write your answers to the questions in Parts II，III，and IV directly in this booklet． All work should be written in pen，except graphs and drawings，which should be done in pencil．Clearly indicate the necessary steps，including appropriate formula substitutions，diagrams， graphs，charts，etc．Utilize the information provided for each question to determine your answer． Note that diagrams are not necessarily drawn to scale．

The formulas that you may need to answer some questions in this examination are found at the end of the examination．This sheet is perforated so you may remove it from this booklet．

Scrap paper is not permitted for any part of this examination，but you may use the blank spaces in this booklet as scrap paper．A perforated sheet of scrap graph paper is provided at the end of this booklet for any question for which graphing may be helpful but is not required．You may remove this sheet from this booklet．Any work done on this sheet of scrap graph paper will not be scored．

When you have completed the examination，you must sign the statement printed at the end of the answer sheet，indicating that you had no unlawful knowledge of the questions or answers prior to the examination and that you have neither given nor received assistance in answering any of the questions during the examination．Your answer sheet cannot be accepted if you fail to sign this declaration．

[^0]
DO NOT OPEN THIS EXAMINATION BOOKLET UNTIL THE SIGNAL IS GIVEN．

Part I

Answer all 24 questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For each statement or question, choose the word or expression that, of those given, best completes the statement or answers the question. Record your answers on your separate answer sheet. [48]

1 Which expression is equal to $\sin 30^{\circ}$?

Use this space for computations.

(1) $\tan 30^{\circ}$
(3) $\cos 60^{\circ}$
(2) $\sin 60^{\circ}$
(4) $\cos 30^{\circ}$

2 In the diagram of $\triangle S R A$ below, $\overline{K P}$ is drawn such that $\angle S K P \cong \angle S R A$.

If $S K=10, S P=8$, and $P A=6$, what is the length of $\overline{K R}$, to the nearest tenth?
(1) 4.8
(3) 8.0
(2) 7.5
(4) 13.3

3 A rectangle is graphed on the set of axes below.

A reflection over which line would carry the rectangle onto itself?
(1) $y=2$
(3) $y=\frac{1}{2} x-3$
(2) $y=10$
(4) $y=-\frac{1}{2} x+7$

4 The surface of the roof of a house is modeled by two congruent rectangles with dimensions 40 feet by 16 feet, as shown below.

Roofing shingles are sold in bundles. Each bundle covers $33 \frac{1}{3}$ square feet. What is the minimum number of bundles that must be purchased to completely cover both rectangular sides of the roof?
(1) 20
(3) 39
(2) 2
(4) 4

5 Which equation represents a line that is perpendicular to the line

Use this space for computations.

 whose equation is $y-3 x=4$?(1) $y=-\frac{1}{3} x-4$
(3) $y=-3 x+4$
(2) $y=\frac{1}{3} x+4$
(4) $y=3 x-4$

6 A vertical mine shaft is modeled in the diagram below. At a point on the ground 50 feet from the top of the mine, a ventilation tunnel is dug at an angle of 47°.

What is the length of the tunnel, to the nearest foot?
(1) 47
(3) 68
(2) 54
(4) 73

7 On the set of axes below, $\triangle B L U$ has vertices with coordinates $B(-3,-2), L(-2,5)$, and $U(1,1)$.

What is the area of $\triangle B L U$?
(1) 11
(3) 14
(2) 12.5
(4) 17.1

8 In the diagram below, $\triangle C A R$ is mapped onto $\triangle B U S$ after a sequence of rigid motions.

Use this space for computations.

If $A R=3 x+4, R C=5 x-10, C A=2 x+6$, and $S B=4 x-4$, what is the length of $\overline{S B}$?
(1) 6
(3) 20
(2) 16
(4) 28

9 In the diagram below, $\triangle G H J$ is dilated by a scale factor of $\frac{1}{2}$ centered at point B to map onto $\triangle C D F$.

B•

If $\mathrm{m} \angle D F C=40^{\circ}$, what is $\mathrm{m} \angle H J G$?
(1) 20°
(3) 60°
(2) 40°
(4) 80°

10 Directed line segment $A J$ has endpoints whose coordinates are $A(5,7)$ and $J(-10,-8)$. Point E is on $\overline{A J}$ such that $A E: E J$ is $2: 3$. What are the coordinates of point E ?
(1) $(1,-1)$
(3) $(-4,-2)$
(2) $(-5,-3)$
(4) $(-1,1)$

11 A tipping platform is a ramp used to unload trucks, as shown in the diagram below.

The truck is on a 75 -foot-long ramp. The ramp is tipped at an angle of 30°. What is the height of the upper end of the ramp, x, to the nearest tenth of a foot?
(1) 68.7
(3) 43.3
(2) 65.0
(4) 37.5

12 In the diagram below of right triangle $M E T$, altitude $\overline{E S}$ is drawn to

Use this space for computations. hypotenuse $\overline{M T}$.

If $M E=6$ and $S M=4$, what is $M T$?
(1) 9
(3) 5
(2) 8
(4) 4

13 In the diagram below of square $C A S H$, diagonals $\overline{A H}$ and $\overline{C S}$ intersect at Z .

Which statement is true?
(1) $\mathrm{m} \angle A C Z>\mathrm{m} \angle Z C H$
(3) $\mathrm{m} \angle A Z C=\mathrm{m} \angle S H C$
(2) $m \angle A C Z<m \angle A S Z$
(4) $\mathrm{m} \angle A Z C=m \angle Z C H$

14 In the diagram below of circle O, secants $\overline{C F D}$ and $\overline{C H E}$ are drawn

Use this space for computations. from external point C.

If $\mathrm{m} \overparen{D E}=136^{\circ}$ and $\mathrm{m} \angle C=44^{\circ}$, then $\mathrm{m} \overparen{F H}$ is
(1) 46°
(3) 68°
(2) 48°
(4) 88°

15 A right circular cylinder has a diameter of 8 inches and a height of 12 inches. Which two-dimensional figure shows a cross section that is perpendicular to the base and passes through the center of the base?

(1)

(2)

(3)

16 On the set of axes below, $\overleftrightarrow{A B}$ is drawn and passes through $A(-2,6)$

Use this space for computations. and $B(4,0)$.

If $\overrightarrow{C D}$ is the image of $\overleftrightarrow{A B}$ after a dilation with a scale factor of $\frac{1}{2}$ centered at the origin, which equation represents $\overrightarrow{C D}$?
(1) $y=-x+4$
(3) $y=-\frac{1}{2} x+4$
(2) $y=-x+2$
(4) $y=-\frac{1}{2} x+2$

17 In parallelogram $A B C D$ with $\overline{A C} \perp \overline{B D}, A C=12$ and $B D=16$. What is the perimeter of $A B C D$?
(1) 10
(3) 40
(2) 24
(4) 56

18 In the diagram of $\triangle C A T$ below, $\mathrm{m} \angle A=90^{\circ}$ and altitude $\overline{A E}$ is drawn from vertex A.

Which statement is always true?
(1) $\frac{C E}{A E}=\frac{A E}{E T}$
(3) $\frac{A C}{C E}=\frac{A T}{E T}$
(2) $\frac{A E}{C E}=\frac{A E}{E T}$
(4) $\frac{C E}{A C}=\frac{A C}{E T}$

19 A sandbox in the shape of a rectangular prism has a length of 43 inches and a width of 30 inches. Jack uses bags of sand to fill the sandbox to a depth of 9 inches. Each bag of sand has a volume of 0.5 cubic foot. What is the minimum number of bags of sand that must be purchased to fill the sandbox?
(1) 14
(3) 7
(2) 13
(4) 4

20 Parallelogram EATK has diagonals $\overline{E T}$ and $\overline{A K}$. Which information is

Use this space for computations.

 always sufficient to prove EATK is a rhombus?(1) $\overline{E A} \perp \overline{A T}$
(3) $\overline{E T} \cong \overline{A K}$
(2) $\overline{E A} \cong \overline{A T}$
(4) $\overline{E T} \cong \overline{A T}$

21 In the diagram below, $\overleftrightarrow{A B C D} \| \overleftrightarrow{E H K}$, and $\overleftrightarrow{M B H P}$ and $\overleftrightarrow{N C H L}$ are drawn such that $\overline{B C} \cong \overline{B H}$.

If $\mathrm{m} \angle N C D=62^{\circ}$, what is $\mathrm{m} \angle P H K$?
(1) 118°
(3) 62°
(2) 68°
(4) 56°

22 Triangles $Y E G$ and $P O M$ are two distinct non-right triangles such that $\angle G \cong \angle M$. Which statement is sufficient to prove $\triangle Y E G$ is always congruent to $\triangle P O M$?
(1) $\angle E \cong \angle O$ and $\angle Y \cong \angle P$
(2) $\overline{Y G} \cong \overline{P M}$ and $\overline{Y E} \cong \overline{P O}$
(3) There is a sequence of rigid motions that maps $\angle E$ onto $\angle O$ and $\overline{Y E}$ onto $\overline{P O}$.
(4) There is a sequence of rigid motions that maps point Y onto point P and $\overline{Y G}$ onto $\overline{P M}$.

23 In the diagram of triangles $A B D$ and $C B E$ below, sides $\overline{A D}$ and $\overline{C E}$

Use this space for computations. intersect at F, and $\angle A D B \cong \angle C E B$.

Which statement can not be proven?
(1) $\triangle A D B \cong \triangle C E B$
(3) $\triangle A D B \sim \triangle C E B$
(2) $\angle E A F \cong \angle D C F$
(4) $\triangle E A F \sim \triangle D C F$

24 A small town is installing a water storage tank in the shape of a cylinder. The tank must be able to hold at least 100,000 gallons of water. The tank must have a height of exactly 30 feet.
[1 cubic foot holds 7.48 gallons of water]
What should the minimum diameter of the tank be, to the nearest foot?
(1) 12
(3) 65
(2) 24
(4) 75

Part II

Answer all 7 questions in this part. Each correct answer will receive 2 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [14]

25 In isosceles triangle $A B C$ shown below, $\overline{A B} \cong \overline{A C}$, and altitude $\overline{A D}$ is drawn.

The length of $\overline{A D}$ is 12 cm and the length of $\overline{B C}$ is 10 cm .
Determine and state, to the nearest cubic centimeter, the volume of the solid formed by continuously rotating $\triangle A B C$ about $\overline{A D}$.

26 The diagram below models the projection of light from a lighthouse, L. The sector has a radius of 38 miles and spans 102°.

Determine and state the area of the sector, to the nearest square mile.

27 Segment $C A$ is drawn below. Using a compass and straightedge, construct isosceles right triangle $C A T$ where $\overline{C A} \perp \overline{C T}$ and $\overline{C A} \cong \overline{C T}$. [Leave all construction marks.]

28 On the set of axes below, congruent triangles $A B C$ and $D E F$ are graphed.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.

29 In $\triangle A D C$ below, $\overline{E B}$ is drawn such that $A B=4.1, A E=5.6, B C=8.22$, and $E D=3.42$.

Is $\triangle A B E$ similar to $\triangle A D C$? Explain why.

30 Determine and state the coordinates of the center and the length of the radius of the circle represented by the equation $x^{2}+16 x+y^{2}+12 y-44=0$.

31 In the diagram below, $\triangle S B C \sim \triangle C M J$ and $\cos J=\frac{3}{5}$.

Determine and state $\mathrm{m} \angle S$, to the nearest degree.

Part III

Answer all 3 questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [12]

32 Trish is a surveyor who was asked to estimate the distance across a pond. She stands at point C, 85 meters from point D, and locates points A and B on either side of the pond such that A, D, and B are collinear.

Trish approximates the measure of angle $D C B$ to be 35° and the measure of angle $A C D$ to be 75°.
Determine and state the distance across the pond, $\overline{A B}$, to the nearest meter.

33 A candle in the shape of a right pyramid is modeled below. Each side of the square base measures 12 centimeters. The slant height of the pyramid measures 16 centimeters.

Determine and state the volume of the candle, to the nearest cubic centimeter.

The wax used to make the candle weighs 0.032 ounce per cubic centimeter. Determine and state the weight of the candle, to the nearest ounce.

34 In the diagram of quadrilateral $A B C D$ below, $\overline{A B} \cong \overline{C D}$, and $\overline{A B} \| \overline{C D}$. Segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$.

Prove: $\overline{C E} \cong \overline{A F}$

Part IV

Answer the question in this part. A correct answer will receive 6 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided to determine your answer. Note that diagrams are not necessarily drawn to scale. A correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [6]

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$.
Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.

Question 35 continued

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]

Scrap Graph Paper - this sheet will not be scored.

											,															
-																										
,																										
									,			-	-		-			-								
													-					-								

Scrap Graph Paper - this sheet will not be scored.

High School Math Reference Sheet

1 inch $=2.54$ centimeters	1 kilometer $=0.62$ mile	1 cup $=8$ fluid ounces
1 meter $=39.37$ inches	1 pound $=16$ ounces	1 pint $=2$ cups
1 mile $=5280$ feet	1 pound $=0.454$ kilogram	1 quart $=2$ pints
1 mile $=1760$ yards	1 kilogram $=2.2$ pounds	1 gallon $=4$ quarts
1 mile $=1.609$ kilometers	1 ton $=2000$ pounds	1 gallon $=3.785$ liters
		1 liter $=0.264$ gallon
	1 liter $=1000$ cubic centimeters	

Triangle	$A=\frac{1}{2} b h$
Parallelogram	$A=b h$
Circle	$A=\pi r^{2}$
Circle	$C=\pi d$ or $C=2 \pi r$
General Prisms	$V=B h$
Cylinder	$V=\pi r^{2} h$
Sphere	$V=\frac{4}{3} \pi r^{3}$
Cone	$V=\frac{1}{3} \pi r^{2} h$
Pyramid	$V=\frac{1}{3} B h$

Pythagorean Theorem	$a^{2}+b^{2}=c^{2}$
Quadratic Formula	$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Arithmetic Sequence	$a_{n}=a_{1}+(n-1) d$
Geometric Sequence	$a_{n}=a_{1} r^{n-1}$
Geometric Series	$S_{n}=\frac{a_{1}-a_{1} r^{n}}{1-r}$ where $r \neq 1$
Radians	1 radian $=\frac{180}{\pi}$ degrees
Degrees	1 degree $=\frac{\pi}{180}$ radians
Exponential Growth/Decay	$A=A_{0} e^{k\left(t-t_{0}\right)}+B_{0}$

[^0]: Notice ．．．
 A graphing calculator，a straightedge（ruler），and a compass must be available for you to use while taking this examination．

