The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY

Wednesday, January 24, 2024 - 9:15 a.m. to 12:15 p.m., only

MODEL RESPONSE SET

Table of Contents
Question 25 2
Question 26 9
Question 27. 16
Question 28. 22
Question 29. 33
Question 30. 41
Question 31 48
Question 32 56
Question 33. 66
Question 34. 76
Question 35 85

Question 25

25 In isosceles triangle $A B C$ shown below, $\overline{A B} \cong \overline{A C}$, and altitude $\overline{A D}$ is drawn.

The length of $\overline{A D}$ is 12 cm and the length of $\overline{B C}$ is 10 cm .
Determine and state, to the nearest cubic centimeter, the volume of the solid formed by continuously rotating $\triangle A B C$ about $\overline{A D}$.

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \pi\left(5^{2}\right)(12) \\
& =\frac{1}{3} \pi(25)(12) \\
& =\frac{1}{3} 300 \pi \\
& =\frac{1}{3}(942.4777961) \\
& =314.159 \\
& =314
\end{aligned}
$$

Score 2: The student gave a complete and correct response.

Question 25

25 In isosceles triangle $A B C$ shown below, $\overline{A B} \cong \overline{A C}$, and altitude $\overline{A D}$ is drawn.

The length of $\overline{A D}$ is 12 cm and the length of $\overline{B C}$ is 10 cm .
Determine and state, to the nearest cubic centimeter, the volume of the solid formed by continuously rotating $\triangle A B C$ about $\overline{A D}$.

$$
\begin{aligned}
& V=\frac{1}{3} \pi r^{2} h \\
& V=\frac{1}{3} \pi 5^{2}(12) \\
& V=314
\end{aligned}
$$

Score 2: The student gave a complete and correct response.

Question 25

25 In isosceles triangle $A B C$ shown below, $\overline{A B} \cong \overline{A C}$, and altitude $\overline{A D}$ is drawn.

The length of $\overline{A D}$ is 12 cm and the length of $\overline{B C}$ is 10 cm .
Determine and state, to the nearest cubic centimeter, the volume of the solid formed by continuously rotating $\triangle A B C$ about $\overline{A D}$.

Score 1: The student did not show work when determining the volume.

Question 25

25 In isosceles triangle $A B C$ shown below, $\overline{A B} \cong \overline{A C}$, and altitude $\overline{A D}$ is drawn.

The length of $\overline{A D}$ is 12 cm and the length of $\overline{B C}$ is 10 cm .
Determine and state, to the nearest cubic centimeter, the volume of the solid formed by continuously rotating $\triangle A B C$ about $\overline{A D}$. come

$$
\begin{aligned}
& V=1 / 3 \pi r^{2} h \\
& V=1 / 3 \pi(5)^{2}(12) \\
& V=1 / 3 \pi 25(12) \\
& V=\frac{\pi 25(12)}{3} \\
& V=\frac{78.539(12)}{3} \\
& V=\frac{942.47}{3}
\end{aligned}
$$

Score 1: The student made one rounding error.

Question 25

25 In isosceles triangle $A B C$ shown below, $\overline{A B} \cong \overline{A C}$, and altitude $\overline{A D}$ is drawn.

The length of $\overline{A D}$ is 12 cm and the length of $\overline{B C}$ is 10 cm .
Determine and state, to the nearest cubic centimeter, the volume of the solid formed by continuously rotating $\triangle A B C$ about $\overline{A D}$.

$$
\begin{aligned}
& v=\frac{1}{3} \pi r^{2} h \\
& v=\frac{1}{3} \pi(5)^{2} \cdot 12 \\
& v=942.47 \\
& v=942
\end{aligned}
$$

Score 1: The student made a computational error by not multiplying by $\frac{1}{3}$.

Question 25

25 In isosceles triangle $A B C$ shown below, $\overline{A B} \cong \overline{A C}$, and altitude $\overline{A D}$ is drawn.

The length of $\overline{A D}$ is 12 cm and the length of $\overline{B C}$ is 10 cm .
Determine and state, to the nearest cubic centimeter, the volume of the solid formed by continuously rotating $\triangle A B C$ about $\overline{A D}$.
$\mathrm{V}=\mathrm{Bh}$

$V=300 \mathrm{~cm}^{3}$
$L=2 \pi r$
$C=2 \pi(13)$

Score 0: The student did not show enough relevant course-level work to receive any credit.

Question 25

25 In isosceles triangle $A B C$ shown below, $\overline{A B} \cong \overline{A C}$, and altitude $\overline{A D}$ is drawn.

The length of $\overline{A D}$ is 12 cm and the length of $\overline{B C}$ is 10 cm .
Determine and state, to the nearest cubic centimeter, the volume of the solid formed by continuously rotating $\triangle A B C$ about $\overline{A D}$.

$$
\begin{aligned}
& V=\frac{1}{3} B h \\
& V=\frac{1}{3}(10)(12) \\
& V=40 \mathrm{~cm}
\end{aligned}
$$

Score 0: The student did not show enough relevant course-level work to receive any credit.

Question 26

26 The diagram below models the projection of light from a lighthouse, L. The sector has a radius of 38 miles and spans 102°.

Determine and state the area of the sector, to the nearest square mile.

$$
\begin{aligned}
& \frac{\not x}{360} \times \pi r^{2}=A \text { of sector } \\
& \frac{102}{360} \times \pi 38^{2}=A \text { of sector } \\
& \frac{102}{360} \times \pi 1444=A \text { of sector } \\
& \frac{102}{360} \times 4536.4598=A \text { of sector } \\
& 1285.3303=A \text { of sector } \\
& 1285 \mathrm{mi}^{2}=A \text { of sector }
\end{aligned}
$$

Score 2: The student gave a complete and correct response.

Question 26

26 The diagram below models the projection of light from a lighthouse, L. The sector has a radius of 38 miles and spans 102°.

Determine and state the area of the sector, to the nearest square mile.

$$
\begin{aligned}
\text { Acrickr} & \pi r^{2} \\
& =\pi(38)^{2} \quad 1444 \pi \cdot \frac{102}{360} \\
& =1444 \pi
\end{aligned}
$$

Score 2: The student gave a complete and correct response.

Question 26

26 The diagram below models the projection of light from a lighthouse, L. The sector has a radius of 38 miles and spans 102°.

Determine and state the area of the sector, to the nearest square mile.

Score 2: The student gave a complete and correct response.

Question 26

26 The diagram below models the projection of light from a lighthouse, L. The sector has a radius of 38 miles and spans 102°.

Determine and state the area of the sector, to the nearest square mile.

$$
A=\left(\frac{\theta}{360}\right) \pi r^{2}
$$

$$
A=\left(\frac{102}{360}\right) \pi 38^{2}
$$

$$
x=409 . \overline{3}
$$

the area of the sector is 409 miles ${ }^{2}$

Score 1: The student made a computational error by leaving π out.

Question 26

26 The diagram below models the projection of light from a lighthouse, L. The sector has a radius of 38 miles and spans 102°.

Determine and state the area of the sector, to the nearest square mile.

$$
\begin{aligned}
& A=\pi r^{2} \frac{x}{360} \\
& A=\pi(38)^{2}\left(\frac{102}{360}\right) \\
& A=33,8244809 \\
& A=34 \mathrm{mi}^{2}
\end{aligned}
$$

Score 1: The student made a computational error by not squaring 38.

Question 26

26 The diagram below models the projection of light from a lighthouse, L. The sector has a radius of 38 miles and spans 102°.

Determine and state the area of the sector, to the nearest square mile.

$$
x=67.64698800
$$

Score 1: The student determined the arc length of the sector.

Question 26

26 The diagram below models the projection of light from a lighthouse, L. The sector has a radius of 38 miles and spans 102°.

Determine and state the area of the sector, to the nearest square mile.

$$
\begin{array}{rlrl}
A & =\pi 38^{2} & 360-102=258 \\
& =4536.46 & & 4536.46 \div 258
\end{array}
$$

$$
\text { A sect }=17.6
$$

Score 0: The student did not show enough relevant course-level work to receive any credit.

Question 27

27 Segment $C A$ is drawn below. Using a compass and straightedge, construct isosceles right triangle $C A T$ where $\overline{C A} \perp \overline{C T}$ and $\overline{C A} \cong \overline{C T}$. [Leave all construction marks.]

Score 2: The student gave a complete and correct response.

Question 27

27 Segment $C A$ is drawn below. Using a compass and straightedge, construct isosceles right triangle $C A T$ where $\overline{C A} \perp \overline{C T}$ and $\overline{C A} \cong \overline{C T}$. [Leave all construction marks.]

Score 2: The student gave a complete and correct response.

Question 27

27 Segment $C A$ is drawn below. Using a compass and straightedge, construct isosceles right triangle $C A T$ where $\overline{C A} \perp \overline{C T}$ and $\overline{C A} \cong \overline{C T}$. [Leave all construction marks.]

Score 1: The student constructed an isosceles triangle, but not a right triangle.

Question 27

27 Segment $C A$ is drawn below. Using a compass and straightedge, construct isosceles right triangle $C A T$ where $\overline{C A} \perp \overline{C T}$ and $\overline{C A} \cong \overline{C T}$.
[Leave all construction marks.]

Score 1: The student constructed an isosceles triangle, but did not construct a right angle at C.

Question 27

27 Segment $C A$ is drawn below. Using a compass and straightedge, construct isosceles right triangle $C A T$ where $\overline{C A} \perp \overline{C T}$ and $\overline{C A} \cong \overline{C T}$.
[Leave all construction marks.]

Score 0: The student did not construct $\overline{C A} \perp \overline{C T}$ and $\overline{C A} \cong \overline{C T}$.

Question 27

27 Segment $C A$ is drawn below. Using a compass and straightedge, construct isosceles right triangle $C A T$ where $\overline{C A} \perp \overline{C T}$ and $\overline{C A} \cong \overline{C T}$. [Leave all construction marks.]

Score 0: A drawing that is not an appropriate construction is shown.

Question 28

28 On the set of axes below, congruent triangles $A B C$ and $D E F$ are graphed.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.

Rolate $\triangle A B C 90^{\circ}$ counterclockense about the
 orgin

Score 2: The student gave a complete and correct response.

Question 28

28 On the set of axes below, congruent triangles $A B C$ and $D E F$ are graphed.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.
first, A frarslatat. on of $-7,-3$ Mapprag $A \rightarrow 0$
then a counterclockwise rotation of goo about point D,

Score 2: The student gave a complete and correct response.

Question 28

28 On the set of axes below, congruent triangles $A B C$ and $D E F$ are graphed.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.
$\triangle A B C$ reflects over Y-axis then translate one unit up lad one unit right

Score 1: The student mapped $\triangle A B C$ onto $\triangle F E D$.

Question 28

28 On the set of axes below, congruent triangles $A B C$ and $D E F$ are graphed.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.

Translation 7 right and 3 up so that D lies $\cap \backsim A$. Rotation around point A of 90° clockumse.

Score 1: The student mapped $\triangle D E F$ onto $\triangle A B C$.

Question 28

28 On the set of axes below, congruent triangles $A B C$ and $D E F$ are graphed.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.

$$
\begin{aligned}
& \text { 1. Translate up } 1 \text { crit } \\
& \text { 2. Trans late left L unit } \\
& \text { 3. reflection over the y-Axis }
\end{aligned}
$$

Score 1: The student mapped $\triangle A B C$ onto $\triangle F E D$.

Question 28

28 On the set of axes below, congruent triangles $A B C$ and $D E F$ are graphed.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.

$$
\text { rotation } 90^{\circ} \text { counter clock wise }
$$

Score 1: The student did not state the center of rotation.

Question 28

28 On the set of axes below, congruent triangles $A B C$ and $D E F$ are graphed.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.
a 90° rotation
counter clactivise
$A=-5,5$
B - -6
$-1,6$

Score 1: The student did not state the center of rotation.

Question 28

28 On the set of axes below, congruent triangles $A B C$ and $D E F$ are graphed.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.
rotation around $(0,0), 90^{\circ}$

Score 1: The student did not state the direction of the rotation.

Question 28

28 On the set of axes below, congruent triangles $A B C$ and $D E F$ are graphed.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.

$$
\begin{aligned}
& \text { Reflect } \triangle A \in\left(\text { cows sim } x=\frac{1}{2}\right. \\
& \text { Translate up } 1
\end{aligned}
$$

Score 1: The student mapped $\triangle A B C$ onto $\triangle F E D$.

Question 28

28 On the set of axes below, congruent triangles $A B C$ and $D E F$ are graphed.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.
Rotation of 270° counterclockwise

Score 0: The student did not state the center of rotation and stated an incorrect direction of the rotation.

Question 28

28 On the set of axes below, congruent triangles $A B C$ and $D E F$ are graphed.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.

$$
\begin{aligned}
& y \text {-axis reflection and then a linetrasslation } \\
& \text { of }(x+1, y-1) \text {. }
\end{aligned}
$$

Score 0: The student gave a completely incorrect response.

Question 29

29 In $\triangle A D C$ below, $\overline{E B}$ is drawn such that $A B=4.1, A E=5.6, B C=8.22$, and $E D=3.42$.

Is $\triangle A B E$ similar to $\triangle A D C$? Explain why.

Score 2: The student gave a complete and correct response.

Question 29

29 In $\triangle A D C$ below, $\overline{E B}$ is drawn such that $A B=4.1, A E=5.6, B C=8.22$, and $E D=3.42$.

Is $\triangle A B E$ similar to $\triangle A D C$? Explain why.
 A in common due to
some angle, $\Varangle A \cong \Varangle A$

$$
\begin{aligned}
& \frac{4.1}{9.02}=\frac{5.6}{12,32} \\
& \frac{5}{11}=\frac{5}{11}
\end{aligned}
$$

They are similar because they nave two pairs of corresponding sides in propation on have angle

Score 2: The student gave a complete and correct response.

Question 29

29 In $\triangle A D C$ below, $\overline{E B}$ is drawn such that $A B=4.1, A E=5.6, B C=8.22$, and $E D=3.42$.

Is $\triangle A B E$ similar to $\triangle A D C$? Explain why.

$$
\begin{aligned}
& \frac{9.02}{4.1}=\frac{12.32}{5.6} \\
& 50.512=50.512 \mathrm{~V}
\end{aligned}
$$

$\triangle A B E$ is \sim to $\triangle A D C$ because sole lengths are proportional by scale factor $k=2.2$

Score 1: The student wrote an incomplete explanation.

Question 29

29 In $\triangle A D C$ below, $\overline{E B}$ is drawn such that $A B=4.1, A E=5.6, B C=8.22$, and $E D=3.42$.

Is $\triangle A B E$ similar to $\triangle A D C$? Explain why.

$$
\begin{aligned}
& 2.2=\frac{12.32}{5.6}=\frac{9.02}{4.2}=2.2 \\
& \text { Yes because } \\
& \text { and } A C \& A E \text { hive the } A D \text { sane } \\
& \text { ratio. }
\end{aligned}
$$

Score 1: The student wrote an incomplete explanation.

Question 29

29 In $\triangle A D C$ below, $\overline{E B}$ is drawn such that $A B=4.1, A E=5.6, B C=8.22$, and $E D=3.42$.

Is $\triangle A B E$ similar to $\triangle A D C$? Explain why.

$\triangle A D C$ be it does not check with the side splitter metros.

Score 1: The student made an error when determining the proportional segments.

Question 29

29 In $\triangle A D C$ below, $\overline{E B}$ is drawn such that $A B=4.1, A E=5.6, B C=8.22$, and $E D=3.42$.

Is $\triangle A B E$ similar to $\triangle A D C$? Explain why.

Score 0: The student did not show enough correct relevant work to receive any credit.

Question 29

29 In $\triangle A D C$ below, $\overline{E B}$ is drawn such that $A B=4.1, A E=5.6, B C=8.22$, and $E D=3.42$.

Is $\triangle A B E$ similar to $\triangle A D C$? Explain why.

$$
\frac{5.6}{3.42}=\frac{4.1}{8.22}
$$

$\triangle A B E$ is similar to $\triangle A D C$ because the sides are proportional.

Score 0: The student gave a completely incorrect response.

Question 29

29 In $\triangle A D C$ below, $\overline{E B}$ is drawn such that $A B=4.1, A E=5.6, B C=8.22$, and $E D=3.42$.

Is $\triangle A B E$ similar to $\triangle A D C$? Explain why. $\triangle A B E$ is similarto $\triangle A D C$
because consecutive angles
are

Score 0: The student gave a completely incorrect response.

Geometry - Jan. '24

Question 30

30 Determine and state the coordinates of the center and the length of the radius of the circle represented by the equation $x^{2}+16 x+y^{2}+12 y-44=0$.

$$
\begin{gathered}
x^{2}+16 x+y^{2}+12 y-44=0 \\
+44+44 \\
\frac{10}{2}=(8)^{2}=64 \\
\frac{12}{2}=(6)^{2}=36\left(x^{2}+16 x+y^{2}+12 y=44\right. \\
x^{2}+16 x+64+y^{2}+12 y+36=44+64+36 \\
(x+8)(x+8)+(y+6)(y+6)=144 \\
(x+8)^{2}+(y+6)^{2}=144 \\
\left(\begin{array}{l}
(x+36) \\
\text { Radius }=12
\end{array}\right]
\end{gathered}
$$

Score 2: The student gave a complete and correct response.

Question 30

30 Determine and state the coordinates of the center and the length of the radius of the circle represented by the equation $x^{2}+16 x+y^{2}+12 y-44=0$.

$$
\begin{aligned}
& x^{2}+16 x+64+y^{2}+12 y+36=44+164+36 \\
& (x+8)^{2}+(y+6)^{2}=144 \\
& \text { center: }(-8,-6) \\
& \text { radius: } 12
\end{aligned}
$$

Score 2: The student gave a complete and correct response.

Question 30

30 Determine and state the coordinates of the center and the length of the radius of the circle represented by the equation $x^{2}+16 x+y^{2}+12 y-44=0$.

$$
\begin{aligned}
& x^{2}+16 x+64+y^{2}+12 y-44=0 \\
& x^{2}+16 x+y^{2}+12 y=20
\end{aligned}
$$

Score 1: The student determined the coordinates of the center of the circle.

Question 30

30 Determine and state the coordinates of the center and the length of the radius of the circle represented by the equation $x^{2}+16 x+y^{2}+12 y-44=0$.

$$
\begin{aligned}
& x^{2}+16 x+64+y^{2}+12 y+36=-44+36+64 \\
& \qquad(x+8)^{2}+(y+6)^{2}=56 \\
& \text { Center: }(-8,-6) \\
& \text { Radius }=\sqrt{56}
\end{aligned}
$$

Score 1: The student made an error when determining the length of the radius of the circle.

Question 30

30 Determine and state the coordinates of the center and the length of the radius of the circle represented by the equation $x^{2}+16 x+y^{2}+12 y-44=0$. $7+44$

$$
\begin{gathered}
x^{2}+16 x+64+y^{2}+12 y+36=44+36+64 \\
(x+8)^{2}+(y+6)^{2}=144 \\
\text { Center }(-8,-6) \quad \frac{1}{2} 144=72 \\
\text { radius }=72
\end{gathered}
$$

Score 1: The student made an error when determining the length of the radius of the circle.

Question 30

30 Determine and state the coordinates of the center and the length of the radius of the circle represented by the equation $x^{2}+16 x+y^{2}+12 y-44=0$.

$$
\begin{aligned}
& \left(\frac{1}{2}\right) 16 \\
& b_{2} 2 \\
& \hline 2
\end{aligned}=c A
$$

$$
\left.\begin{array}{cl}
x^{2}+16 x+64=0 & y^{2}+12 y+36=0 \\
(x+4)(x+4)=0 & (y+6)(y+2)=0 \\
x+4=0 & y+6=0 \\
\frac{-4-4}{x=-4} & y=-6
\end{array}\right) y=-2=0 .
$$

Score 0: The student did not show enough correct relevant work to receive any credit.

Question 30

30 Determine and state the coordinates of the center and the length of the radius of the circle represented by the equation $x^{2}+16 x+y^{2}+12 y-44=0$.

$$
\begin{array}{r}
\left.x^{2}+16 x\left(\frac{1(x)}{2}\right)^{2}+y^{2} 124+(9)\right)^{2}=-44 \\
x^{2}+16 x+64+y^{2}+12 y+36=-44 \\
-8 \\
x^{2}+16 x+y^{2}+12 y=56 \\
(x+8)+(y+6)=56
\end{array}
$$

Score 0: The student did not show enough correct relevant work to receive any credit.

Question 31

31 In the diagram below, $\triangle S B C \sim \triangle C M J$ and $\cos J=\frac{3}{5}$.

Determine and state $\mathrm{m} \angle S$, to the nearest degree.

$$
\begin{gathered}
\sin x=\frac{3}{5} \quad \sin -1\left(\frac{3}{5}\right) \\
36.869897 \\
m \angle S \sim 37^{\circ}
\end{gathered}
$$

Score 2: The student gave a complete and correct response.

Question 31

31 In the diagram below, $\triangle S B C \sim \triangle C M J$ and $\cos J=\frac{3}{5}$.

Determine and state $\mathrm{m} \angle S$, to the nearest degree.
$180-143=37^{\circ}$
$M L S=37^{\circ}$ becous $\angle S=\angle J L M$ and $C J C M$ is 37° blase $53+90=143$ and $180-143 \quad 37^{\circ}$.

Score 2: The student gave a complete and correct response.

Question 31

31 In the diagram below, $\triangle S B C \sim \triangle C M J$ and $\cos J=\frac{3}{5}$.

Determine and state $\mathrm{m} \angle S$, to the nearest degree.

$$
\begin{gathered}
\cos J=\frac{3}{5}\left(\cos ^{-1}\right) \quad 90-53.130102=36.869 \\
\left.\cos ^{-1}\right) \quad 5=53.130102 \\
m \angle S=37^{\circ}
\end{gathered}
$$

Score 2: The student gave a complete and correct response.

Question 31

31 In the diagram below, $\triangle S B C \sim \triangle C M J$ and $\cos J=\frac{3}{5}^{\text {in }}$

Determine and state $\mathrm{m} \angle S$, to the nearest degree.

$$
\begin{aligned}
& \quad \cos J=3 / 5 \\
& \quad \cos ^{-1}(3 / 5) \quad \text { since } \triangle \operatorname{SB} c \sim \Delta C M J \\
& m<s=53^{\circ} .
\end{aligned}
$$

Score 1: The student made an error in determining the measure of $\angle S$.

Question 31

31 In the diagram below, $\triangle S B C \sim \triangle C M J$ and $\cos J=\frac{3}{5}$.

Determine and state $\mathrm{m} \angle S$, to the nearest degree.

$$
\begin{aligned}
& m \angle S=37^{\circ} \text { be triangles } \\
& \text { equal } 180^{\circ} \text { and } 180-143=37^{\circ}
\end{aligned}
$$

Score 1: The student determined the measure of $\angle S$, but did not show work to determine 143°.

Question 31

31 In the diagram below, $\triangle S B C \sim \triangle C M J$ and $\cos J=\frac{3}{5}$.

Determine and state $\mathrm{m} \angle S$, to the nearest degree.
$\frac{3}{5}$

Score 0: The student gave a completely incorrect response.

Question 31

31 In the diagram below, $\triangle S B C \sim \triangle C M J$ and $\cos J=\frac{3}{5}$.

Determine and state $\mathrm{m} \angle S$, to the nearest degree.

$$
\begin{aligned}
& m<S \text { is } \frac{3}{5} \text { because } \\
& \text { the angles } J \text { an } S \text { are } \\
& \text { similar. }
\end{aligned}
$$

Score 0: The student gave a completely incorrect response.

Question 31

31 In the diagram below, $\triangle S B C \sim \triangle C M J$ and $\cos J=\frac{3}{5}$.

Determine and state $\mathrm{m} \angle S$, to the nearest degree.

$\cos B$ is congruent to
$\sin A$.

Score 0: The student gave a completely incorrect response.

Geometry - Jan. '24

Question 32

32 Trish is a surveyor who was asked to estimate the distance across a pond. She stands at point C, 85 meters from point D, and locates points A and B on either side of the pond such that A, D, and B are collinear.

Trish approximates the measure of angle $D C B$ to be 35° and the measure of angle $A C D$ to be 75°.
Determine and state the distance across the pond, $\overline{A B}$, to the nearest meter.

$$
\begin{array}{rlrl}
\tan 75 & =\frac{y}{85} & \tan 35 & =\frac{x}{85} \\
& =317.224 \\
& =59 . \\
& \frac{317.224}{376.7417} & \approx 377
\end{array}
$$

Score 4: The student gave a complete and correct response.

Question 32

32 Trish is a surveyor who was asked to estimate the distance across a pond. She stands at point C, 85 meters from point D, and locates points A and B on either side of the pond such that A, D, and B are collinear.

Trish approximates the measure of angle $D C B$ to be 35° and the measure of angle $A C D$ to be 75°.
Determine and state the distance across the pond, $\overline{A B}$, to the nearest meter.

$$
\begin{gathered}
\tan 35^{\circ}=\frac{y}{85} \\
y=\tan 35^{\circ}(85) \\
y=59.5
\end{gathered}
$$

$$
\tan 75^{\circ}=\frac{x}{85}
$$

$$
x=\tan 75(85)
$$

$$
x=317.2
$$

$$
317.2+59.5=376.7
$$

Score 4: The student gave a complete and correct response.

Question 32

32 Trish is a surveyor who was asked to estimate the distance across a pond. She stands at point C, 85 meters from point D, and locates points A and B on either side of the pond such that A, D, and B are collinear.

Trish approximates the measure of angle $D C B$ to be 35° and the measure of angle $A C D$ to be 75°.
Determine and state the distance across the pond, $\overline{A B}$, to the nearest meter.

Score 3: The student made one rounding error.

Question 32

32 Trish is a surveyor who was asked to estimate the distance across a pond. She stands at point C, 85 meters from point D, and locates points A and B on either side of the pond such that A, D, and B are collinear.

Trish approximates the measure of angle $D C B$ to be 35° and the measure of angle $A C D$ to be 75°.
Determine and state the distance across the pond, $\overline{A B}$, to the nearest meter.

Score 3: The student made one rounding error.

Question 32

32 Trish is a surveyor who was asked to estimate the distance across a pond. She stands at point C, 85 meters from point D, and locates points A and B on either side of the pond such that A, D, and B are collinear.

Trish approximates the measure of angle $D C B$ to be 35° and the measure of angle $A C D$ to be 75°.
Determine and state the distance across the pond, $\overline{A B}$, to the nearest meter.

$$
\begin{aligned}
& \text { oOH CAl TbA } \\
& \frac{\operatorname{Tcn} 35}{1} \not \approx \frac{x}{85} \\
& x=59.51764075 \\
& \frac{\tan 45}{1} \times \frac{y}{85} \\
& y=85 \\
& 5951+64075+85=144.5
\end{aligned}
$$

Score 3: The student made a transposition error in labeling the measure of $\angle A C D$ as 45°.

Question 32

32 Trish is a surveyor who was asked to estimate the distance across a pond. She stands at point C, 85 meters from point D, and locates points A and B on either side of the pond such that A, D, and B are collinear.

Trish approximates the measure of angle $D C B$ to be 35° and the measure of angle $A C D$ to be 75°. Determine and state the distance across the pond, $\overline{A B}$, to the nearest meter.

$$
\begin{aligned}
& \tan 75=\frac{x}{85} \\
& \tan 75(85)=x
\end{aligned}
$$

$$
x=317.22
$$

Score 2: The student determined the length of $\overline{A D}$.

Question 32

32 Trish is a surveyor who was asked to estimate the distance across a pond. She stands at point C, 85 meters from point D, and locates points A and B on either side of the pond such that A, D, and B are collinear.

Trish approximates the measure of angle $D C B$ to be 35° and the measure of angle $A C D$ to be 75°. Alt

Determine and state the distance across the pond, $\overline{A B}$, to the nearest meter.

$\frac{\cos (35)}{1}=\frac{85}{x}$
$85 \tan (75)=y$
$\frac{\cos (35) x}{\cos (35)}=\frac{85}{\cos (35)}$
$y=317.2243186$ $+103.76584$
$=420.9901586$

$$
=103.76584
$$

421 meters

Score 2: The student made a conceptual error when determining the length of $\overline{D B}$.

Question 32

32 Trish is a surveyor who was asked to estimate the distance across a pond. She stands at point C, 85 meters from point D, and locates points A and B on either side of the pond such that A, D, and B are collinear.

Trish approximates the measure of angle $D C B$ to be 35° and the measure of angle $A C D$ to be 75°. Determine and state the distance across the pond, $\overline{A B}$, to the nearest meter.

Score 2: The student determined the length of $\overline{D B}$.

Question 32

32 Trish is a surveyor who was asked to estimate the distance across a pond. She stands at point C, 85 meters from point D, and locates points A and B on either side of the pond such that A, D, and B are collinear.

Trish approximates the measure of angle $D C B$ to be 35° and the measure of angle $A C D$ to be 75°. Determine and state the distance across the pond, $\overline{A B}$, to the nearest meter.

$$
\tan 75^{\circ}=\frac{x}{85}
$$

Score 1: The student wrote correct trigonometric equations, but no further correct work was shown.

Question 32

32 Trish is a surveyor who was asked to estimate the distance across a pond. She stands at point C, 85 meters from point D, and locates points A and B on eithegside of the pond such that A, D, and B are collinear.

Trish approximates the measure of angle $D C B$ to be 35° and the measure of angle $A C D$ to be 75°.
Determine and state the distance across the pond, $\overline{A B}$, to the nearest meter.

$$
\begin{aligned}
& C^{2}=a^{2}+b^{2} \\
& a 0^{2}=35^{2}+b^{2}
\end{aligned}
$$

Score 0: The student gave a completely incorrect response.

Question 33

33 A candle in the shape of a right pyramid is modeled below. Each side of the square base measures 12 centimeters. The slant height of the pyramid measures 16 centimeters.

Determine and state the volume of the candle to the nearest fcubic centimeter.

$$
\begin{array}{ll}
12 \div 2=6 & V=\frac{1}{3} B h \\
\theta^{2}+6^{2}=c^{2} & V=\frac{1}{3}(\mid x \omega)(h) \\
x^{2}+6^{2}=16^{2} & V=\frac{1}{3}(12 \times 12)(14.83239691) \\
x^{2}+\frac{36}{-36}=\frac{25 \sigma}{-36} & V=\frac{1}{3}(144)(14.83239697) \\
\sqrt{x^{2}}=\sqrt{20} & V=\frac{1}{3}(2,135.865164) \\
x=14.83239697 & V=711.9550545
\end{array}
$$

The wax used to make the candle weighs 0.032 ounce per cubic centimeter. Determine and state the weight of the candle, to the neares ounce,

Score 4: The student gave a complete and correct response.

Question 33

33 A candle in the shape of a right pyramid is modeled below. Each side of the square base measures 12 centimeters. The slant height of the pyramid measures 16 centimeters.

Determine and state the volume of the candle, to the nearest cubic centimeter.

$$
\begin{aligned}
& V=\frac{1}{3} B h \\
& V=\frac{1}{3}(12)(12)(14.832) \times h_{1}^{16} \quad \begin{array}{l}
6^{2}+x^{2}
\end{array}=16^{2} \\
& 36+x^{2}=256 \\
& 712 \mathrm{~cm}^{3} \\
&-36=\sqrt{220} \\
& x=14.83
\end{aligned}
$$

The wax used to make the candle weighs 0.032 ounce per cubic centimeter. Determine and state the weight of the candle, to the nearest ounce.

Score 3: The student found the volume of the candle, but did not find the weight of the candle.

Question 33

33 A candle in the shape of a right pyramid is modeled below. Each side of the square base measures 12 centimeters. The slant height of the pyramid measures 16 centimeters.

Determine and state the volume of the candle, to the nearest cubic centimeter.

$$
\begin{array}{ll}
16^{2}-6^{2}=x: & \text { pyramid } v=\frac{1}{3} \text { Bn } \\
256-36=x^{2} & v=\frac{1}{3}\left(12^{2}\right) \cdot 14.832=711.936 \\
x^{2}=220 \quad x=14.932 & v=712
\end{array}
$$

The wax used to make the candle weighs 0.032 ounce per cubic centimeter. Determine and state the weight of the candle, to the nearest ounce.

Score 3: The student labeled the wrong unit of weight.

Question 33

33 A candle in the shape of a right pyramid is modeled below. Each side of the square base measures 12 centimeters. The slant height of the pyramid measures 16 centimeters.

Determine and state the volume of the candle, to the nearest cubic centimeter.

$$
\begin{aligned}
& V=\frac{1}{3} B h \\
& V=\frac{1}{3}(144)(16) \\
& V=\frac{1}{3}(2304) \\
& V=768 \mathrm{~cm}^{3}
\end{aligned}
$$

The wax used to make the candle weighs 0.032 ounce per cubic centimeter. Determine and state the weight of the candle, to the nearest ounce.

$$
0.032(768)
$$

24.576 ounces

Score 2: The student made a conceptual error using 16 as the height.

Question 33

33 A candle in the shape of a right pyramid is modeled below. Each side of the square base measures 12 centimeters. The slant height of the pyramid measures 16 centimeters.

Determine and state the volume of the candle, to the nearest cubic centimeter.

The wax used to make the candle weighs 0.032 ounce per cubic centimeter. Determine and state the weight of the candle, to the nearest ounce.

$$
\frac{720}{.032}=22,500
$$

Score 2: The student rounded the height which led to an incorrect volume. The student made an error in determining the weight.

Question 33

33 A candle in the shape of a right pyramid is modeled below. Each side of the square base measures 12 centimeters. The slant height of the pyramid measures 16 centimeters.

Determine and state the volume of the candle, to the nearest cubic centimeter.

$$
\begin{aligned}
& V=\frac{1}{3} B h \\
& V=\frac{1}{3} \cdot 144 \cdot \sqrt{299} \\
& V=820.22 \\
& V=820
\end{aligned}
$$

The wax used to make the candle weighs 0.032 ounce per cubic centimeter. Determine and state the weight of the candle, to the nearest ounce.

$$
(.032)(820)=26.2
$$

Score 2: The student made an error when determining the height and made a rounding error when determining the weight.

Question 33

33 A candle in the shape of a right pyramid is modeled below. Each side of the square base measures 12 centimeters. The slant height of the pyramid measures 16 centimeters.

Determine and state the volume of the candle, to the nearest cubic centimeter.

$$
\left.\begin{array}{rlr}
6^{2}+h^{2} & =16^{2} & V
\end{array}\right)=B h=(12-12)(\sqrt{220})
$$

The wax used to make the candle weighs 0.032 ounce per cubic centimeter. Determine and state the weight of the candle, to the nearest ounce.

Score 2: The student found the height of the pyramid correctly, but used an incorrect formula when determining the volume. No further correct work is shown.

Question 33

33 A candle in the shape of a right pyramid is modeled below. Each side of the square base measures 12 centimeters. The slant height of the pyramid measures 16 centimeters.

Determine and state the volume of the candle, to the nearest cubic centimeter.

$$
\begin{aligned}
& V=\frac{1}{3} B H \\
& V=\frac{1}{3}(12 \times 16) \quad V=64 \mathrm{~cm}^{3} \\
& V=\frac{1}{3}(192) \\
& V=\frac{1}{3} \times \frac{1922}{1}=64
\end{aligned}
$$

The wax used to make the candle weighs 0.032 ounce per cubic centimeter. Determine and state the weight of the candle, to the nearest ounce.

Score 1: The student found an incorrect volume, but found an appropriate weight.

Question 33

33 A candle in the shape of a right pyramid is modeled below. Each side of the square base measures 12 centimeters. The slant height of the pyramid measures 16 centimeters.

Determine and state the volume of the candle, to the nearest cubic centimeter.

The wax used to make the candle weighs 0.032 ounce per cubic centimeter. Determine and state the weight of the candle, to the nearest ounce.

Score 0: The student did not show enough relevant course-level work to receive any credit.

Question 33

33 A candle in the shape of a right pyramid is modeled below. Each side of the square base measures 12 centimeters. The slant height of the pyramid measures 16 centimeters.

Determine and state the volume of the candle, to the nearest cubic centimeter.

$$
\begin{aligned}
& V=\frac{1}{3} b h \\
& V=\frac{1}{3}(12)(16) \\
& V=64 \mathrm{~cm}^{3}
\end{aligned}
$$

The wax used to make the candle weighs 0.032 ounce per cubic centimeter. Determine and state the weight of the candle, to the nearest ounce.

Score 0: The student gave a completely incorrect response.

Question 34

34 In the diagram of quadrilateral $A B C D$ below, $\overline{A B} \cong \overline{C D}$, and $\overline{A B} \| \overline{C D}$.
Segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$.

Prove: $\overline{C E} \cong \overline{A F}$

Statements	Reasons

(1) Quad $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$
(s) $\overline{B E} \cong \overline{D F}$
(2) $A B C D$ is a p-gram
(B) $\overline{B C} \| \overline{A D}$
(5) (4) $\overline{B C} \cong \overline{A D}$
(4) (5) $41 \cong \neq 2$
(6) $\triangle B C E \cong \triangle D A F$
(7) $\overline{C E} \cong \overline{A F}$
© given
(2) if a quad has one pair of opp sides 11 and \cong, it is a p-gram
(3) opp sides of a p-gram arell
(4) Opp sides of a p-gram are \cong
(5) if lines are II and cut by a transl., cult. int. y's are \cong
(b) SAS $\cong S A S$
(7) CPCTC

Score 4: The student gave a complete and correct response.

Question 34

34 In the diagram of quadrilateral $A B C D$ below, $\overline{A B} \cong \overline{C D}$, and $\overline{A B} \| \overline{C D}$.
Segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$.

Prove: $\overline{C E} \cong \overline{A F}$

$$
\begin{aligned}
& \text { 2). } \overline{B E+E F}=\overline{B F}+\overline{B F}=\overline{D E} \\
& \text { 2.5). } \overline{E F} \cong \overline{E F} \quad \text { of its parts } \\
& \text { 3). } \overline{\bar{E}+}+\overline{E F} \cong \overline{D F}+\overline{E F} \\
& \text { 3). Addition } \\
& \text { 4). } \overline{B F} \cong \overline{D E} \text { 4). Subs titution Popesty of Equality, } \\
& \text { 5). } \Varangle A B E \cong=\{\text { (OF } \\
& \text { 4) when If lines are cut } \\
& \text { 5). by a tratssersal alt. } \\
& \text { in } 1 . x^{\prime} s \text { are } \cong \\
& \text { 6) } \triangle A B F \approx \angle C D E \text { 6). SAS Congaterce theorem } \\
& \text { 7). } \overline{C E} \cong \overline{A F} \text { 7). Cores. part of } \cong \triangle \text { 's }
\end{aligned}
$$

Score 4: The student gave a complete and correct response.

Question 34

34 In the diagram of quadrilateral $A B C D$ below, $\overline{A B} \cong \overline{C D}$, and $\overline{A B} \| \overline{C D}$.
Segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$.

Prove: $\overline{C E} \cong \overline{A F}$

Statements	Reasons

(1) Quad $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$, (1) givens $\overline{B D}$ is a diagonal, $\overline{B E} \cong \overline{D F}$.
(2) $\Varangle A B F \cong C D E$
(3) $\overline{E_{F}} \mathfrak{O}$ 伦。
(4) $\overline{B E}+\overline{E F} \cong \overline{D F}+\overline{F E}$ or $\overline{B F} \cong \overline{=D E}$
(5) $\triangle A F B \cong=D C E D$
(6) $\overline{A F} \cong \overline{C E}$
(2) When parallel lines are cut by a transversal, they form two congruent alternate interior angles
(3) reflexive property
(4) addition
(5) SAS \cong SIS
(b) CPCTC

Score 4: The student gave a complete and correct response.

Question 34

34 In the diagram of quadrilateral $A B C D$ below, $\overline{A B} \cong \overline{C D}$, and $\overline{A B} \| \overline{C D}$.
Segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$.

Prove: $\overline{C E} \cong \overline{A F}$

1) $A B C D$ is a quadrileterd,
$\overline{A B}$ is \cong and $\|$ to $\overline{C D}$;
$\overline{C E}$ and $\overline{A F}$ are drawn to diegonel $\overline{B D}$ sothet $\overline{B E} \cong \overline{D F}$
2) $A B C D$ is a parallelogram 3) $\overline{A D} \cong \overline{B C}$
3) $\angle C D B \cong \angle A B D$
4) $\angle C D A \cong \angle C B A$
5) $\angle C D A-\angle C D B \cong \angle C B A-$ $\angle A B D$ or

$$
\begin{aligned}
& \angle B D A \cong \angle C B D \\
& \text { 7) } \triangle F D A=\triangle E B C \\
& \text { 8) } \overline{C E} \cong A F
\end{aligned}
$$

2) When ane pair of opposite sides of a quadrilateral are parallel and congruent the quad is a parillelagran 3) opposite sides of a para
are congruent
3) Af. Int. angles
4) opposite angles ofparallelogram are congruent
5) When 2 congruent quantities are subtracted from 2 congruent quantities the results are cappruent.
6) SAS
7) CPCTC

Score 3: The student had an incomplete reason in step 4.

Question 34

34 In the diagram of quadrilateral $A B C D$ below, $\overline{A B} \cong \overline{C D}$, and $\overline{A B} \| \overline{C D}$.
Segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$.

Prove: $\overline{C E} \cong \overline{A F}$

1) Quad $A B C D, \overline{A B}$ is \cong and 11 to $\overline{C D}$. Segments $C E$ and $\overline{A F}$ are drawn to diagonal $\widehat{B D}$ Such that $\overline{B E} \cong \overline{D F}$
2) Quad $A B C D$ is a p.gram
3) $\overline{B C}$ and $\overline{A D} \cong$
4) $\angle 1 \cong \angle 2$
5) $\triangle B C E \cong \triangle D A F$
b) $\overline{C E} \cong \overline{A F}$
6) Given
7) opp. sides \simeq and $/ / \rightarrow$ p.gram
8) opp. sj:des \subseteq in p.gram
9) If 11 limes \rightarrow alt. int. 's's
10) SAS
b) $C P C T C$

Score 3: The student had one missing statement and reason to prove step 4.

Question 34

34 In the diagram of quadrilateral $A B C D$ below, $\overline{A B} \cong \overline{C D}$, and $\overline{A B} \| \overline{C D}$.
Segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$.

Prove: $\overline{C E} \cong \overline{A F}$

1. Quad $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$, 1. Given $\overline{C E}+\overline{A F}$ are drawn to diagous $/ \overline{B D}$ $\overline{B E}$ ユロ $\overline{D F}$
2. $A B C D$ is a parallelogram
3. $x 1 \cong 22$
4. $\overline{B C} \cong \overline{A D}$
5. $\triangle A D F \because \triangle C B E$
6. $\overline{C E} \cong \overline{A F}$
7. If one pair of apposite sides of a quad are loud 11, it is a parallelogram.
8. Alternate interior angles are?
9. apposite Sides of a \square are ?
10. SAS ESAS
11. CPLTC

Score 2: The student had one missing statement and reason to prove step 3 and an incomplete reason in step 3.

Question 34

34 In the diagram of quadrilateral $A B C D$ below, $\overline{A B} \cong \overline{C D}$, and $\overline{A B} \| \overline{C D}$.
Segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$.

Prove: $\overline{C E} \cong \overline{A F}$

(1) Quad $A B C D, \overline{A B} \equiv \overline{C D}$
(1) Given
$\overline{A B} \| \overline{C D} \overline{C E}+\overline{A F}$ drawn to
diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$
(2) $\overline{B E}+\overline{X E F} \cong \overline{D F}+\overline{E F}$
\& Addition Preorty

$$
\bar{B} F \cong \overline{S E}
$$

(3) $\angle A B F \cong \angle C D E$
(3) If 2 lines il, then

Alternate Interior L 's \cong
(4) $\triangle B A F \cong \triangle D C E$
(4) SAS
(5) $\overline{C E} \cong \overline{A F}$
(5) Sides of $\cong \Delta^{\prime}$'s

Score 2: The student had a missing statement and reason to prove step 2 and had an incorrect reason in step 5 .

Question 34

34 In the diagram of quadrilateral $A B C D$ below, $\overline{A B} \cong \overline{C D}$, and $\overline{A B} \| \overline{C D}$.
Segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$.

Prove: $\overline{C E} \cong \overline{A F}$

1. Real ABCD

$$
\frac{A B}{A B} \| C D
$$

$$
B E=\sqrt{F E} \quad \text { SEM }
$$

2. $\triangle A B F \equiv \triangle C E$ ($a \equiv \alpha$
3. $\triangle A B F \cong \triangle C D E$

$$
\text { 4. } \overline{C E}=\overline{A F}
$$

Given
2. Parallel lines form \cong alternate interior angles
3. $B S A \cong S S A$
4. Segments are ㄹ.

Score 1: The student had only one correct relevant statement and reason in step 2.

Question 34

34 In the diagram of quadrilateral $A B C D$ below, $\overline{A B} \cong \overline{C D}$, and $\overline{A B} \| \overline{C D}$.
Segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$.

Prove: $\overline{C E} \cong \overline{A F}$

statements	reasons
1.) $\overline{A B}$ is congruent and parallel to $\overline{C D} \cdot \overline{B E}=\overline{D F}$	1.) Given
2.) $\angle A \cong \angle C$	2.) alternate interior angles congruent
3.) $\angle B ;<D$ ave vight angles	3.) def of perpendicular lines
4.) $\angle B \cong \angle D$	4.) all vight angles congruent
5.) $\overline{C E} \cong \overline{A F}$	5.) Opposite sides ave both parallel and congruent

Score 0: The student gave a completely incorrect response.

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$.
Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]

Quadrilateral MTTH is a trapezoid because. it has a pair of parallel sides.

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.
$y(7.3)$

Question 35 is continued on the next page.
Score 6: The student gave a complete and correct response.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]

Slope of $\overline{F I}=-1 / 2$
Sop of $\overline{M M}=2$
Slop of $\overline{T y}=2$
 Hainaut (T) are parcel.
$\therefore \mu y+$ is a pandlagyam.
Since te shes es ID My and AH are meghan rectocele, my $\overline{\mathrm{man}}$, so couple M
 is a rigitamle. 2
Than MTH is a resample because it is a papallloganem with a nigltangle.

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$.
Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]

$$
\begin{aligned}
& m \widehat{M A}=\frac{7-5}{-1-3}=\frac{2}{-4}=-\frac{1}{2} \\
& m \overline{H T}=\frac{-7--3}{2--6}=\frac{-4}{8}=-\frac{1}{2} \\
& \left\{\begin{array}{l}
\text { Share Slope } \\
\text { Parallel Lines }
\end{array}\right. \\
& \text { MATH is a trapezoid } \\
& m \overline{A_{T}}=\frac{5-7}{3-2}=\frac{12}{1}=12 \\
& \text { because it has } 1 \text { Pair } \\
& \text { of Parallel sides. } \\
& m \overline{M H}=\frac{7--3}{-1-6}=\frac{10}{5}=(2)
\end{aligned}
$$

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.

$$
y(7,3)
$$

Question 35 is continued on the next page.
Score 6: The student gave a complete and correct response.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]

$$
\begin{aligned}
& d \overline{M Y}=\sqrt{(7--1)^{2}+(3-7)^{2}}=\sqrt{64+16}=\sqrt{80} \\
& d \overline{H T}=\sqrt{(2--6)^{2}+(7--3)^{2}}=\sqrt{64+16}=\sqrt{80} \\
& d \overline{M H}=\sqrt{(-1--6)^{2}+(7--3)^{2}}=\sqrt{25+100}=\sqrt{125} \\
& d \overline{Y T}=\sqrt{(7-2)^{2}+(3--7)^{2}}=\sqrt{25+100}=\sqrt{125}
\end{aligned} \text { Same length }
$$

MYTH is a parallelogram b/c it has 2 Pairs of \cong opposite sides.
$\overline{M A} \perp \overline{M H} b / c$ negative reciprocals slopes, $\therefore L M$ is a right angle. MYTH is a rectangle ble it is a parallelogram with a right

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$.
Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]

$$
\begin{aligned}
& \text { Slope of line } \overline{M A}=-\frac{2}{4}=-\frac{1}{2} \\
& \text { Slope of line } \overline{H T}=-\frac{4}{8}=-\frac{1}{2}
\end{aligned}>\overline{M A} \| \overline{H T}
$$

MATH is a trapezoid because it
has one pair of parallel sides $\sqrt{H A}$ ad $\overline{H T}$.

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.

$$
\text { Y, }(7,3)
$$

Question 35 is continued on the next page.

Score 5: The student wrote a partially correct concluding statement when proving the rectangle.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]
Slope of $\overline{M Y}=-\frac{4}{8}=-\frac{1}{2} \quad$ All the sides ore pergendicwlor slope of $\overline{H T}=-1$ to each other because they slope of $10 \frac{1}{2}$ have opposite reciprocal slopes. Meaning all Slope \& $\overline{H M}=\frac{10}{5}=2$ the angles ar right angles MYTH. Ste pe $-\frac{10}{5}=2$ has 2 pairs o parallel incs $\overline{M Y / I} \overline{H T}$ and $\overline{H M} I I T Y$. A recteonge has all right angles and 2 pares u provllel lies so MyTh is a rectangle

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$. Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]
Quabilateal MATH is a trapezad if it has a pair of $1 /$ sides,

Quadrilateral MAttll is atragezo.d bes
it has one pair of $1 /$ sides
State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.

$$
\begin{aligned}
& \overline{m A} \frac{7-5}{-1-3}-\frac{2}{4} \\
& y(7,3)
\end{aligned}
$$

Question 35 is continued on the next page.
Score 5: The student wrote a partially correct concluding statement when proving the rectangle.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]
Quborilateral MVTH is a rectangle if all 4 agnes are rt k

$$
\begin{aligned}
& \text { HT } \frac{-3+7}{-6-2} \frac{4}{-6}-\frac{2}{4}-\frac{1}{2} \overline{M y} \frac{3-7}{7+1}-\frac{4}{5}=-\frac{2}{4}=-\frac{1}{2} \\
& \overline{Y T} \frac{3+7}{7-2} \frac{10}{5}=\frac{2}{1} \quad \overline{M H}=\frac{7+3}{-1+6} \frac{10}{5} \frac{2}{1}
\end{aligned}
$$

Quadriateral $M Y T H$ iss reclange because all 4 sides are neg
reciprocals DCS HT and $\overline{M Y}$ are $-\frac{1}{2}$ and YT and $\frac{\text { MH are } \frac{7}{7} \text { therefore neg rec, }}{}$ create Lines and \perp limes form it $k \therefore$ Quadiblearl MyTh isar rectangle,

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$.
Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]

$$
\left.\begin{array}{l}
m \overline{m A}=-\frac{1}{2} \\
m \overline{H T}=-\frac{1}{2}
\end{array}\right\} \text { same } \overline{m A} \| \overline{H T}
$$

Since quad MATH has only one set
of parallel sides, it is a trapezoid.

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.

$$
(7,3)
$$

Question 35 is continued on the next page.
Score 4: The student made a conceptual error when proving the rectangle.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]

$$
\begin{aligned}
& d \overline{m y}=\sqrt{(7-1)^{2}+(3-7)^{2}}=\sqrt{80} \\
& d H m=\sqrt{\left((1-6)^{2}+(7-3)^{2}\right.}=\sqrt{125} \\
& d \overline{H T}=\sqrt{(2-6)^{2}+(-7-3)^{2}}=\sqrt{80} \\
& d \overline{T Y}=\sqrt{(7-2)^{2}+(3-7)^{2}}=\sqrt{125}
\end{aligned}
$$

It is a rectangle
because the opposite sides are equal.

Geometry - Jan. ’24

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$.
Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]

$$
\left.\begin{array}{rl}
\text { Slope } \overline{M A}=\frac{5-7}{3(-1)} \quad \text { Slope } \overline{T H} & =\frac{-3-(-7)}{-6-2} \\
& =\frac{-2}{4} \\
& =\frac{-\frac{1}{2}}{-8} \\
& =\frac{-1}{2}
\end{array}\right] \quad \text { Since } \overline{M A} \text { and } \overline{T H} \text { have the same slope, } \overline{M A} \| \overline{T H}
$$

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.

$$
y(7,3)
$$

Question 35 is continued on the next page.
Score 4: The student made a conceptual error when proving the rectangle.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]

$$
\begin{aligned}
M T & =\sqrt{(-1-2)^{2}+(7-(-1))^{2}} & H Y & =\sqrt{(7-(-6))^{2}+(3-(-3))^{2}} \\
& =\sqrt{(-3)^{2}+(14)^{2}} & & =\sqrt{13^{2}+6^{2}} \\
& =\sqrt{9+196} & & =\sqrt{169+36} \\
& =\sqrt{205} & & \sqrt{205}
\end{aligned}
$$

Since the diagonals of quad MYTH are \equiv, it is a rectangle.

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$.
Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]
Slope $\overline{m a} \frac{5-7}{3+1}=\frac{2}{4}=-\frac{1}{2}>$ parallel $\quad \therefore$ Quad MATH
Slope $\overline{T H} \frac{-3+7}{-6-2}=\frac{4}{-8}=-\frac{1}{2}>$ parallel is a trapezoid because it has onepair of 11
sides.

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.

$$
\text { point } K=(7,3)
$$

Question 35 is continued on the next page.
Score 4: The student made a conceptual error when proving the rectangle.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]

$$
m(-1,7)+(2,-7)
$$

$$
y(7,3) \text { n }(-6,-3)
$$

Quad M Mill is a rectangle because it has
1 diagenals and 2 pairs of ll sides

$$
\begin{aligned}
& m \text { Slopeof } \overline{M A}=\frac{1}{2} \\
& \text { Sloreofitit }=\frac{1}{2} \\
& \text { Slopeof MT: }: \frac{-3-7}{-6+1}=\frac{10}{5}=2 \\
& \text { Slopeof FT: } \frac{-7-3}{2-7}=\frac{10}{9}=2 \\
& \text { Slope } \overline{m^{2}}=\frac{-7.7}{2+1}: \frac{-14}{3} \\
& \text { Slope } \overline{y n}=\frac{-3-3}{-6-7}=\frac{6}{13}
\end{aligned}
$$

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$.
Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]

$$
\begin{aligned}
& \overline{M A}=-2 / 4 \\
& \overline{H T}=-4 / 8=-2 / 4
\end{aligned}>\text { parallel }
$$

Trapezoids are a quadrilateral with are set of paralel lines,
$\overline{M A}$ and $\overline{H T}$ ane parallel.

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.

$$
(7,3)
$$

Question 35 is continued on the next page.
Score 3: The student made one conceptual and one computational error when proving the rectangle.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]
slope $\begin{aligned} & \overline{M Y}=-4 / 8 \\ & \overline{H T}=-4 / 8=-1 / 2\end{aligned}$
slope $\begin{aligned} \overrightarrow{M H} & =\frac{10}{5}=1 / 2 \\ T H & =\frac{10}{5}\end{aligned}$

Rectangles are quadribitereals with two sets of parallel lives, MY II HT and MHIITy. They also require four 90° angles, since the Slopes are regative recipricals, $(-1 / 2$ and $1 / 2)$ then they create a 910°
angle. angle.

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$.
Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]

plan

Show

$\left.\begin{array}{l}M_{M A}=-\frac{2}{4}=-\frac{1}{2} \\ M_{H T}=-\frac{4}{4}=-1\end{array}\right\} \overline{M A} \| H T$ because
one set of cape. $\mathrm{M}_{\mathrm{HT}}=-\frac{4}{8}=\frac{-1}{2}\{$ their slopes are $=$
sides
are 11.

$$
\begin{aligned}
& m \overline{M H}=\frac{10}{5}=2 \text { MIIHAT because there } \\
& m \overline{A T}=12 \text { slopes rent equal. }
\end{aligned}
$$

> MATH is a trapezoid because there is only one pair of opp sides Il.

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$. $M A=\frac{-2}{4}=\frac{-1}{2}$

$$
(7,3)
$$

Question 35 is continued on the next page.
Score 3: The student made a conceptual error in proving the rectangle and did not write a concluding statement.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]

$$
\begin{array}{rlrl}
d \overline{M Y} \sqrt{(7+1)^{2}+(3-7)^{2}} & d \overline{H T} \sqrt{(2+6)^{2}+(-7+3)^{2}} \\
& =\sqrt{(8)^{2}+(-4)^{2}} & & =\sqrt{(8)^{2}+(-4)^{2}} \\
& =\sqrt{64+16} & & =\sqrt{64+16} \\
& =\sqrt{80} & & =\sqrt{80}
\end{array}
$$

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$.
Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]

$$
\overline{M A}=\text { Slope of } 2 / 4=1 / 2>11 \text { Quadralateral MATt is a }
$$

$$
\bar{\pi}=5 / \text { ope of } 4 / 8=1 / 2
$$

trapazoid, because in order
to be a trapazoid you must have

$$
1 \text { pair of opposite sides that one }
$$

11. In Malty both Mas and Min

$$
\begin{aligned}
& \text { ore parallel. As well as opposite } \\
& \text { sides. Then. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { sides. Therefore quadriotero. MATt } \\
& \text { is a trapizoi, }
\end{aligned}
$$

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.

$$
\begin{aligned}
& \text { If } A \text { is the midpoint of } \overline{M Y} \text {, then } Y \text { would } \\
& \text { be booted at } p+(7,3) \text {. }
\end{aligned}
$$

Question 35 is continued on the next page.

Score 2: The student made a computational error in determining the slopes of $\overline{M A}$ and $\overline{T H}$. The student found the coordinates of Y. No further correct work was shown.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]
It is a rectorgh bless si rectangle has all 4 sides congruent. The opposite sides $\overline{\sqrt{T}}$ and $\overline{M H}$ are 11 anal opposite sides MIV and IT T ore $11: \therefore$ there are 2 sets of opposite sides that are II. Makkiry My Ha
rectarcje.

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$.
Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.

$$
(7,2)
$$

Question 35 is continued on the next page.

Score 2: The student found the coordinates of point Y and found the slopes of the sides, but did not prove the MATH was a trapezoid and MYTH was a rectangle.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]

$$
\begin{aligned}
& \text { Slope }(\overline{M Y})=-4 / 8=-1 / 2 \\
& \text { slope }(\overline{H T})=-4 / 8=-1 / 2 \\
& \text { slope }(\overline{H M})=10 / 5=2 \\
& \text { slope }(\overline{T Y})=10 / 5=2
\end{aligned}
$$

Geometry - Jan. '24

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$.
Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]

$$
\begin{array}{ll}
\overline{H T} \frac{-3+(+7)}{-6-2}=\frac{4}{-6}=\left(\frac{2}{-4}\right. & \left.\overline{M A}=\frac{5-7}{3+(+1)}=\frac{-2}{4}\right) \\
\overline{H M}=\frac{-3-7}{-6+(-1)}=\frac{-10}{-5}=\left(\frac{2}{4}\right. & \overline{T A}=\frac{-7-5}{2-3}=\frac{-12}{-1}=\left(\frac{12}{1}\right.
\end{array}
$$

The slope of $\overline{H T}\left(\frac{2}{4}\right)$ is opposite reciple to $\overline{M A}\left(\frac{-2}{4}\right)$, therefore parallel). The slopes of HTM

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.

Question 35 is continued on the next page.

Score 1: The student found the slopes of the sides of MATH. No further correct work was shown.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$.
Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]

$$
\begin{aligned}
& m \overline{H T}=\frac{-7--3}{2-6}=\frac{-4}{8}=\frac{-\frac{1}{2}}{m \overline{M A}=\frac{5-7}{3-1}=\frac{-2}{4}=-\frac{-1}{2}} \quad \text { / Same } \\
& \text { slope }
\end{aligned}
$$

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.

Question 35 is continued on the next page.

Score 1: The student found the slopes of $\overline{H T}$ and $\overline{M A}$. No further correct work was shown.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$. Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]

$$
\begin{aligned}
& \frac{5-7}{3--1} \\
& \frac{-3+7}{-6-2} \\
& \frac{-2}{4} \\
& \frac{-7}{2-7} \\
& \frac{-1}{-3-5}-\frac{2}{-6-3} \\
& \frac{-3}{9}
\end{aligned}
$$

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.

$$
\begin{aligned}
& \text { The points } M \text { and } T \text { show } \\
& \text { that it is a trapezoid since } \\
& \text { both all equal when plotted on a } \\
& \text { graph, }
\end{aligned}
$$

Question 35 is continued on the next page.

Score 0: The student did not show enough relevant course-level work to receive any credit.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$.
Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]

$$
\begin{aligned}
& \begin{array}{c|c}
\text { Statements } & \text { Reasons } \\
\begin{array}{c}
\text { (1) Quad MATH has } \\
\text { vertices } M(-1,7), A(3,5)
\end{array} & \text { (1) given }
\end{array} \\
& T(2,-7) \text { and } H(-6,-3) \\
& \text { (2) MAA } \| \overline{H T}+\overline{M H 1} 1 \text { AT } \text { (2) inca quadrilater } \\
& \text { Opp. video ara } 11
\end{aligned}
$$

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.

$$
y(6,3)
$$

Question 35 is continued on the next page.
Score 0: The student had a completely incorrect response.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.] Quadrilater MYTH is a rectangle because it has \approx sides and $k s$ from the traporecid.

Geometry - Jan. ’24

