The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION

GEOMETRY

Tuesday, August 20, 2024 — 12:30 to 3:30 p.m., only

MODEL RESPONSE SET

Table of Contents

Ouestion 25	2
Question 26	9
Question 27	14
Question 28	21
Question 29	28
Question 30	35
Question 31	41
Question 32	47
Question 33	58
Question 34	69
Question 35	81

27 Triangle *MAX* has vertices with coordinates M(-5, -2), A(1,4), and X(4,1).

Determine and state the area of $\triangle MAX$.

27 Triangle *MAX* has vertices with coordinates M(-5, -2), A(1,4), and X(4,1).

Determine and state the area of $\triangle MAX$.

27 Triangle *MAX* has vertices with coordinates M(-5, -2), A(1,4), and X(4,1).

Determine and state the area of $\triangle MAX$.

27 Triangle *MAX* has vertices with coordinates M(-5, -2), A(1,4), and X(4,1).

Determine and state the area of $\triangle MAX$.

27 Triangle *MAX* has vertices with coordinates M(-5, -2), A(1,4), and X(4,1).

Determine and state the area of $\triangle MAX$.

Determine and state the horizontal distance, *x*, between the person and the point on the ground directly below the kite, to the *nearest foot*.

 $tan (32) = \frac{40}{x}$ $x = \frac{60}{100}$ X= 105.62 Score 2: The student gave a complete and correct response.

Determine and state the horizontal distance, x, between the person and the point on the ground directly below the kite, to the *nearest foot*.

 $\frac{4432}{x}$ $\frac{5}{x}$ $\frac{1}{2}$ $\frac{1}{2}$

1an32

Score 2: The student gave a complete and correct response.

28 A person observes a kite at an angle of elevation of 32° from a line of sight that begins 4 feet above the ground, as modeled in the diagram below. At the moment of observation, the kite is 70 feet above the ground.

Determine and state the horizontal distance, *x*, between the person and the point on the ground directly below the kite, to the *nearest foot*.

$$\frac{\tan 32}{1} = \frac{66}{X}$$

$$\frac{66}{\tan(32)} \times \frac{1}{\tan(32)}$$

Score 1: The student wrote a correct relevant trigonometric equation.

Determine and state the horizontal distance, *x*, between the person and the point on the ground directly below the kite, to the *nearest foot*.

Soh Can Tom

tan (32 = 0.6248693519) $\frac{0.6249}{1} = \frac{70}{x}$ 70 = 0.6249x 0.6249 = 0.6249x (112 = x)

Determine and state the horizontal distance, x, between the person and the point on the ground directly below the kite, to the *nearest foot*.

Score 1: The student made a computational error.

28 A person observes a kite at an angle of elevation of 32° from a line of sight that begins 4 feet above the ground, as modeled in the diagram below. At the moment of observation, the kite is 70 feet above the ground.

Determine and state the horizontal distance, *x*, between the person and the point on the ground directly below the kite, to the *nearest foot*.

Tand=
$$\frac{0}{A}$$

70. Tan(sz) = $\frac{70}{X}$. 70
 $\times -43.74085463$
 $\times = 43.7$

Score 0: The student wrote an incorrect trigonometric equation and solved it incorrectly.

Determine and state the horizontal distance, *x*, between the person and the point on the ground directly below the kite, to the *nearest foot*.

Score 0: The student wrote an incorrect trigonometric equation, made an error adding 4 to the distance, and made a rounding error.

Score 1: The student made a conceptual error, but found an appropriate answer.

Determine and state, to the *nearest gram*, the mass of the pyramid.

 $V = \frac{1}{3}Bh$ $V = \frac{1}{3}(5.7)^{5}.7$ V=75.81 75.81 × 2.4 = 181.444

5,7cm F7x: 1136.8 X= 1939 The student did not show enough correct relevant course-level work to receive any credit. Score 0:

Determine and state the width of the fire, \overline{AB} , to the *nearest foot*.

32 A drone is used to measure the size of a brush fire on the ground. Segment *AB* represents the width of the fire, as shown below. The drone calculates the distance to point *B* to be 1076 feet at an angle of depression of 25° . At the same point, the drone calculates the distance to point *A* to be 774 feet at an angle of depression of 36° .

Determine and state the width of the fire, \overline{AB} , to the *nearest foot*.

$\cos 36 = \frac{y}{774}$	$\cos 25 = \frac{x + 626.176}{1676}$
y= (0536(774)	x +626.176 = cos 25 (1076)
y= 626.179	x+626.176= 9751871789
	x=340

32 A drone is used to measure the size of a brush fire on the ground. Segment *AB* represents the width of the fire, as shown below. The drone calculates the distance to point *B* to be 1076 feet at an angle of depression of 25° . At the same point, the drone calculates the distance to point *A* to be 774 feet at an angle of depression of 36° .

Determine and state the width of the fire, \overline{AB} , to the *nearest foot*.

$$\frac{5in 54}{1} = \frac{y}{774}$$

$$636.1741... = y$$

$$\frac{5in 65}{1} = \frac{x4y}{1076}$$

$$975.1871... = x4y$$

$$975.1871... = x4y$$

$$975.1871...$$

$$= 636.1791...$$

32 A drone is used to measure the size of a brush fire on the ground. Segment *AB* represents the width of the fire, as shown below. The drone calculates the distance to point *B* to be 1076 feet at an angle of depression of 25° . At the same point, the drone calculates the distance to point *A* to be 774 feet at an angle of depression of 36° .

Determine and state the width of the fire, \overline{AB} , to the *nearest foot*.

y= 975.19

Score 3: The student made a rounding error in determining the sin 54°.

Determine and state the width of the fire, \overline{AB} , to the *nearest foot*.

Score 2: The student correctly determined the horizontal distance to *B*.

Determine and state the width of the fire, \overline{AB} , to the *nearest foot*.

Score 2: The student correctly determined the horizontal distance to *A*.

Score 1: The student wrote one correct relevant trigonometric equation.

32 A drone is used to measure the size of a brush fire on the ground. Segment *AB* represents the width of the fire, as shown below. The drone calculates the distance to point *B* to be 1076 feet at an angle of depression of 25° . At the same point, the drone calculates the distance to point *A* to be 774 feet at an angle of depression of 36° .

Determine and state the width of the fire, \overline{AB} , to the *nearest foot*.

Score 0: The student did not show enough course-level work to receive any credit.

Determine and state the width of the fire, \overline{AB} , to the *nearest foot*.

$$1076^2 - 774^2 = \overline{AB}^2$$

 $\sqrt{558700} = \overline{AB}^2$
 $\overline{AB} = 747 f d$

Score 0: The student did not show enough course-level work to receive any credit.

33 Quadrilateral *ABCD* has vertices with coordinates A(-3,6), B(6,3), C(6,-2), and D(-6,2).

Joe defines an isosceles trapezoid as a trapezoid with congruent diagonals. Use Joe's definition to prove *ABCD* is an isosceles trapezoid.

[The use of the set of axes below is optional.]

$$\begin{split} & \stackrel{M}{AB} = \frac{3-6}{6-(-3)} = \frac{-3}{9} = -\frac{1}{3} \\ & \stackrel{M}{AB} = \stackrel{M}{B} = \stackrel{M}{AB} || \ \overrightarrow{CD} \\ & \stackrel{M}{CD} = \frac{2-(-3)}{-6-6} = \frac{4}{-12} = -\frac{1}{3} \\ & \stackrel{M}{AB} = \stackrel{M}{CD} \rightarrow \overrightarrow{AB} || \ \overrightarrow{CD} \\ & \stackrel{M}{AB} = \stackrel{M}{AB} = \stackrel{M}{AB} || \ \overrightarrow{CD} \\ & \stackrel{M}{AB} = \stackrel{M}{AB} = \stackrel{M}{AB} || \ \overrightarrow{CD} \\ & \stackrel{M}{AB} = \stackrel{M}{AB} = \stackrel{M}{AB} || \ \overrightarrow{CD} \\ & \stackrel{M}{AB} = \stackrel{M}{AB} = \stackrel{M}{AB} || \ \overrightarrow{CD} \\ & \stackrel{M}{AB} = \stackrel{M}{AB} = \stackrel{M}{AB} || \ \overrightarrow{CD} \\ & \stackrel{M}{AB} = \stackrel{M}{AB} = \stackrel{M}{AB} || \ \overrightarrow{CD} \\ & \stackrel{M}{AB} = \stackrel{M}{AB} = \stackrel{M}{AB} || \ \overrightarrow{CD} \\ & \stackrel{M}{AB} = \stackrel{M}{AB} = \stackrel{M}{AB} || \ \overrightarrow{CD} \\ & \stackrel{M}{AB} = \stackrel{M}{AB} = \stackrel{M}{AB} || \ \overrightarrow{CD} \\ & \stackrel{M}{AB} = \stackrel{M}{AB} = \stackrel{M}{AB} || \ \overrightarrow{CD} \\ & \stackrel{M}{AB} = \stackrel{M}{AB} = \stackrel{M}{AB} || \ \overrightarrow{CD} \\ & \stackrel{M}{AB} = \stackrel{M}{AB} = \stackrel{M}{AB} || \ \overrightarrow{CD} \\ & \stackrel{M}{AB} = \stackrel{M}{AB} = \stackrel{M}{AB} || \ \overrightarrow{CD} \\ & \stackrel{M}{AB} = \stackrel{M}{AB} = \stackrel{M}{AB} || \ \overrightarrow{CD} \\ & \stackrel{M}{AB} = \stackrel{M}{AB} = \stackrel{M}{AB} || \ \overrightarrow{CD} \\ & \stackrel{M}{AB} = \stackrel{M}{AB} = \stackrel{M}{AB} || \ \overrightarrow{CD} \\ & \stackrel{M}{AB} = \stackrel{M}{AB} = \stackrel{M}{AB} || \ \overrightarrow{CD} \\ & \stackrel{M}{AB} = \stackrel{M}{AB} = \stackrel{M}{AB} || \ \overrightarrow{CD} \\ & \stackrel{M}{AB} = \stackrel{M}{$$

33 Quadrilateral *ABCD* has vertices with coordinates A(-3,6), B(6,3), C(6,-2), and D(-6,2).

Joe defines an isosceles trapezoid as a trapezoid with congruent diagonals. Use Joe's definition to prove *ABCD* is an isosceles trapezoid.

[The use of the set of axes below is optional.]

33 Quadrilateral *ABCD* has vertices with coordinates A(-3,6), B(6,3), C(6,-2), and D(-6,2).

Joe defines an isosceles trapezoid as a trapezoid with congruent diagonals. Use Joe's definition to prove *ABCD* is an isosceles trapezoid.

[The use of the set of axes below is optional.]

33 Quadrilateral *ABCD* has vertices with coordinates A(-3,6), B(6,3), C(6,-2), and D(-6,2). Joe defines an isosceles trapezoid as a trapezoid with congruent diagonals. Use Joe's definition to prove *ABCD* is an isosceles trapezoid. ABCD has at least [The use of the set of axes below is optional.] one pair of Parallel sides, ABand DC, this ABCD also has ONLY one pair of Slope $\frac{\overline{AB}}{DL}: \frac{3-6}{6+3} = \frac{-3}{9} = -\frac{1}{3} > Parallel$ $B(\sqrt{(1-1)^2 + (2-3)^2} = \sqrt{0+25} = 5$ not Parallel DA: (3+6)2+ (6-2)2 = 19+16 = 3 longruent siles. not Parallel $\overline{BC} = \frac{-2}{L-b} = \frac{-5}{0}$ Thus all inall, ABCD is an isosceles AD 2-6 -4 4 3 (-3, 6)A (6.3) B Trape Zoid D (6,2) → X (6,+Z) The student proved trapezoid ABCD was isosceles using a method other than congruent Score 3: diagonals.

33 Quadrilateral *ABCD* has vertices with coordinates A(-3,6), B(6,3), C(6,-2), and D(-6,2). Joe defines an isosceles trapezoid as a trapezoid with congruent diagonals. Use Joe's definition to prove *ABCD* is an isosceles trapezoid. [The use of the set of axes below is optional.] Constrant sides Top and bottom 11 $BC = V(6-6)^{3} + (3-2)^{2}$ $\overline{AD} = \sqrt{(-3 + 6)^2 + (6 - 2)^2} \quad \overline{BC} = \sqrt{(0)^2 + (5)^2}$ $\overline{AD} = \sqrt{(3)^2 + (4)^2} \quad \overline{BC} = 5$ $Slopc = \frac{y_2 - y_1}{y_2 - x_1}$ $\overline{AB} = \frac{3-6}{6+3}$ $\overline{AB} = \frac{-1}{3}$ $\overline{AB} \parallel \overline{CD} \quad \overline{CD} = \frac{2-7}{-6-6}$ FD=S Using the slope farmula, I found that bundvikstorn) ABGD has I pair of の言う parallel at des with y " slope of 75 =1 so its a timperoid B Ð **→** X C Score 2: The student proved ABCD was a trapezoid. The student used a method other than congruent diagonals to prove ABCD was isosceles, but the student did not prove AD is not parallel to *BC* and is missing a concluding statement.

33 Quadrilateral *ABCD* has vertices with coordinates A(-3,6), B(6,3), C(6,-2), and D(-6,2).

Joe defines an isosceles trapezoid as a trapezoid with congruent diagonals. Use Joe's definition to prove *ABCD* is an isosceles trapezoid.

[The use of the set of axes below is optional.]

piegonals are congruent

33 Quadrilateral *ABCD* has vertices with coordinates A(-3,6), B(6,3), C(6,-2), and D(-6,2).

Joe defines an isosceles trapezoid as a trapezoid with congruent diagonals. Use Joe's definition to prove ABCD is an isosceles trapezoid.

[The use of the set of axes below is optional.]

34 Ali made six solid spherical decorations out of modeling clay. Each decoration has a radius of 2.5 inches. The weight of clay is 68 pounds per cubic foot. Determine and state, to the *nearest pound*, the total weight of the six decorations. $V_{splice} = \frac{4}{3}\bar{n}(z.5)^{3}$ $V_{splice} = 65.4498in^{3}$ l 65,4498 in3 .6 = 392 .6990 in $\frac{392 \cdot 649c \text{ in}^{3}}{1} \frac{144}{12 \text{ in}} \frac{144}{12 \text{ in}} \cdot \frac{144}{12 \text{ in}} \cdot \frac{144}{14 \text{ in}} \frac{144}{14 \text{ in}} = \frac{144}{14 \text{ in}} \frac{144}{14 \text{ in}} = \frac{144}{14 \text{ in}} \frac{144}{14 \text{ in}} = \frac{144}{14 \text{ in}} = \frac{144}{14 \text{ in}} \frac{144}{14$ Score 4: The student gave a complete and correct response.

34 Ali made six solid spherical decorations out of modeling clay. Each decoration has a radius of 2.5 inches. The weight of clay is 68 pounds per cubic foot.

.

Determine and state, to the *nearest pound*, the total weight of the six decorations.

$$\frac{2}{12} = V = \frac{4}{3} T (3)$$

$$V = \frac{4}{3} T (20)$$

$$V = 0.037 \times 760658$$

To the nearest pound, The total weight of six decorations is 15 pounds.

34 Ali made six solid spherical decorations out of modeling clay. Each decoration has a radius of 2.5 inches. The weight of clay is 68 pounds per cubic foot.

Determine and state, to the *nearest pound*, the total weight of the six decorations.

.

$$V = \frac{4}{3} \pi r^{3}$$

$$V = \frac{4}{3} \pi (2.5)^{3}$$

$$V = \frac{4}{3} \pi (15.625)$$

$$V = 20^{\frac{5}{2}} \pi$$

$$V = 65.44984694...$$

$$65.44984694...$$

$$65.44984694...$$

$$65.44984694...$$

$$65.44984694...$$

$$65.44984694...$$

$$65.44984694...$$

$$65.44984694...$$

$$65.44984694...$$

$$65.44984694...$$

$$65.44984694...$$

$$65.44984694...$$

$$65.44984694...$$

$$65.44984694...$$

$$65.44984694...$$

$$65.44984694...$$

$$65.44984694...$$

$$65.44984694...$$

$$65.44984694...$$

$$7.2492847.68 = 32.72492847$$

$$7.25 \text{ lbs} = 1225 \text{ lbs} = 12225 \text{ lbs} = 122225 \text{ lbs} = 12225 \text{ lbs} = 122225 \text{ l$$

Score 3: The student made an error converting cubic inches to cubic feet. 34 Ali made six solid spherical decorations out of modeling clay. Each decoration has a radius of 2.5 inches. The weight of clay is 68 pounds per cubic foot.

Determine and state, to the *nearest pound*, the total weight of the six decorations.

The formula to find the volume of a sphere
is
$$V=\frac{4}{3}Kr^{3}$$
. The radius is 2.5 inches:
 $V=\frac{4}{3}K(37.0625)$
 $V=\frac{4}{5}K(37.0625)$
 $V=\frac{163.625}{163.625}$
The volume is 163.625 cubic inches, Since there
are 1728 cubic inches in a cubic foot, and $\frac{163.625}{1728}$
is 0.0947, a decartion is 0.0947 cubic feet,
 0.0947 , a decartion is 0.0947 cubic feet,

and 0.0947×6=0,5682, thus making 6 decorations 0,5682 a bic feet, Sinco every cubic Foot is 68 pounds, and 0.5682×68=38,63, hich rounds to 39, the Weight of 6 decorations is 39 pounds

Score 3: The student made a computational error when determining the volume of one sphere.
34 Ali made six solid spherical decorations out of modeling clay. Each decoration has a radius of 2.5 inches. The weight of clay is 68 pounds per cubic foot.

Determine and state, to the *nearest pound*, the total weight of the six decorations.

$$\frac{4}{3} \frac{7}{12.5^3} = 65.449 \\ \frac{\times 6}{392.699} \\ \times 68$$

Score 3: The student made an error by not converting to cubic feet.

34 Ali made six solid spherical decorations out of modeling clay. Each decoration has a radius of 2.5 inches. The weight of clay is 68 pounds per cubic foot.		
Determine and state, to the <i>nearest pound</i> , the total weight of the six decorations.		
	$r=2.5$ (68 165/ f^{3} $V=\frac{4}{3}$ JT 3	
$X = \frac{1}{3} = \sqrt{3} = \sqrt{3} = \sqrt{3} - \frac{1}{4498} + \frac{1}{68} = \sqrt{3} + \frac{1}{3} + \frac{1}{3} = \sqrt{3} + \frac{1}{3} + \frac{1}{3} = \sqrt{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = \sqrt{3} + \frac{1}{3} $		
	VIJJ VA 5007 - 307608	
$v = \frac{4}{3} + 2 \cdot 5^{3}(6) = 392.6990$		
	392.6990 * 68 726703	
Score 2:	The student did not convert to cubic feet and made a rounding error when determining the weight.	

- 34 Ali made six solid spherical decorations out of modeling clay. Each decoration has a radius of 2.5 inches. The weight of clay is 68 pounds per cubic foot. Determine and state, to the *nearest pound*, the total weight of the six decorations. $V = \frac{4}{3} \Re(3.5)^3$ $V = 26.17993878 \text{ in}^3$ $\frac{14}{12 \text{ in}}$ $V = 2.181661665 \text{ ft}^3$ $\frac{13.08996939 \text{ ft}^3}{2.5} \Re(3.5)^3$
 - 890.1179189 8901bs

Score 2: The student made an error by squaring the radius and made an error converting cubic inches to cubic feet.

Score 1: The student correctly determined the volume of one sphere in cubic inches.

34 Ali made six solid spherical decorations out of modeling clay. Each decoration has a radius of 2.5 inches. The weight of clay is 68 pounds per cubic foot.

Determine and state, to the *nearest pound*, the total weight of the six decorations.

Score 1: The student correctly determined the volume of one sphere in cubic inches.

34 Ali made six solid spherical decorations out of modeling clay. Each decoration has a radius of 2.5 inches. The weight of clay is 68 pounds per cubic foot.

Determine and state, to the *nearest pound*, the total weight of the six decorations.

Score 0: The student did not show enough correct relevant work to receive any credit.

34 Ali made six solid spherical decorations out of modeling clay. Each decoration has a radius of 2.5 inches. The weight of clay is 68 pounds per cubic foot.

Determine and state, to the *nearest pound*, the total weight of the six decorations.

 $\frac{4}{3} \pi r^{3}$ $\frac{4}{3} \pi (2.5)^{3}$ V = 5 F t

Score 0: The student did not show enough correct relevant work to receive any credit.

34 Ali made six solid spherical decorations out of modeling clay. Each decoration has a radius of 2.5 inches. The weight of clay is 68 pounds per cubic foot. Determine and state, to the *nearest pound*, the total weight of the six decorations. 65 209.4395102 ~ 3 165 V= 4/3 Mr2 V=4/3n(2.5)2 v = 413 n(6.25)V=26,17993878 26.17993878 X 209. 4395162 Score 0: The student did not show enough correct relevant work to receive any credit.

Question 35

Question 35

35 In quadrilateral <i>HOPE</i> below, $\overline{EH} \cong \overline{OP}$, $\overline{EP} \cong \overline{OH}$, $\overline{EJ} \cong \overline{OG}$, and \overline{TG} and \overline{YJ} are perpendicular to diagonal \overline{EO} at points G and J, respectively.			
$H \qquad Y \qquad 0$ $G \qquad H \qquad H^2 \qquad 0$ $F \qquad T \qquad P$			
Prove that $TG \cong YJ$.			
Statement Land Hope $EH \cong OP$, EP_{AOH} , $EJ \cong OG$, To only J one 1 to EO of G and J a. Quad Hope is a parallelogram. 3. $41 \cong 4a$ 4. 43 and 44 are $r+4s$ 5. $43 \cong 444$ 6. $GJ \cong GJ$ 7. $EG \cong OJ$ 8. $\Delta EGT \cong \Delta OJY$ 9. $TG \cong \overline{YJ}$	Freedor GIVEN I If both pairs of opp: sides of a guad ac \$\overline\$ then it's a parallelogram. If 211 lines are cut by a transversal, the att. int. it's are \$\overline\$ I lines form i + its. 5. rt is are \$\overline\$ 5. Reflexive Postulate 1. subtraction Postulate 8. ASA \$\overline\$ ASA 9. cPCTC		
Score 5: The student did not prove $\overline{HO} \parallel \overline{EP}$ to prove step 3.			

Score 4: The student did not prove $\angle TGE$ and $\angle YJO$ are right angles to prove step 5 and did not prove $\overline{GJ} \cong \overline{GJ}$ to prove step 6.

35 In quadrilateral *HOPE* below, $\overline{EH} \cong \overline{OP}$, $\overline{EP} \cong \overline{OH}$, $\overline{EJ} \cong \overline{OG}$, and \overline{TG} and \overline{YJ} are perpendicular to diagonal \overline{EO} at points G and J, respectively.

Prove that $\overline{TG} \cong \overline{YJ}$.

AEOP= A DEH by SSS. So by CPCTC & CEP= CEOH. Revpadeular lines form congruent right Curdes S: & TOE= 2 YJD. By subtraction JJ = Eb Herefore by AAS a GET = & JUY and 10 = VI by CPCTC

Score 3: The student did not prove $\overline{EO} \cong \overline{EO}$ to prove $\triangle EOP \cong \triangle OEH$, did not prove $\overline{GJ} \cong \overline{GJ}$ to prove $\overline{OJ} \cong \overline{EG}$, and had an incorrect reason to prove $\triangle GET \cong \triangle JOY$.

35 In quadrilateral *HOPE* below, $\overline{EH} \cong \overline{OP}$, $\overline{EP} \cong \overline{OH}$, $\overline{EI} \cong \overline{OG}$, and \overline{TG} and \overline{YI} are perpendicular to diagonal EO at points G and J, respectively. н Prove that $\overline{TG} \cong \overline{YI}$. 1. EH=OP, EP=OH, EJ=OG TG-and IJ are perpendicular Z. JUSS= to dragonal ED at pursus G and J perspectively. 4. (PUTC 1. Gren 3. CPUTC 4. CPUTC 24EHO =∆ EPO 5. Perpendratar lines Pornwight angles 6. All wight angles are congrient 7. ASA = 3. EG=OJ 4, 7 HOE = XPED 5, x EGT and xOJY one WgWt angles 6, x EGT ≈, xOJY 8. CPUTC 7. DEGT 2 DOJY 8. TG SYJ The student did not prove $\overline{EO} \cong \overline{EO}$ to prove step 2. The student made a conceptual error Score 3:

in step 3.

35 In quadrilateral *HOPE* below, $\overline{EH} \cong \overline{OP}$, $\overline{EP} \cong \overline{OH}$, $\overline{EI} \cong \overline{OG}$, and \overline{TG} and \overline{YI} are perpendicular to diagonal EO at points G and I, respectively. н Ο G Prove that $\overline{TG} \cong \overline{YI}$. Proof Claim DEH = OP, EP = OH, EF = OG, M Given TE and VT are perpendicular to diagonal EC @ points E and J 3) parallel lines create atternate angles 8) 26TE is a right angle 2 Ju is a right angle COTE & LYDJ = LTEG () reflexive EO ~ EO subtraction postulate 可全面 DOYJ = DETG ASA CPCTC FG = YG Score 2: The student had two correct statements and reasons in steps 4 and 5.

35 In quadrilateral *HOPE* below, $\overline{EH} \cong \overline{OP}$, $\overline{EP} \cong \overline{OH}$, $\overline{EJ} \cong \overline{OG}$, and \overline{TG} and \overline{YJ} are perpendicular to diagonal \overline{EO} at points G and J, respectively.

Prove that $\overline{TG} \cong \overline{YJ}$.

$$\Delta EGT \text{ ond } \Delta OJY$$
 are both night throughes (night omde)
 $\overline{EG} \cong \overline{OJ}$ (Given)
 $\Delta EGT \cong \Delta OJY$ (HL)
 $\overline{TG} \equiv \overline{VJ}$ (CPCTC)

Score 0: The student did not show enough correct relevant work to receive any credit.

